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ABSTRACT We have developed a new scoring
function, the template modeling score (TM-score), to
assess the quality of protein structure templates
and predicted full-length models by extending the
approaches used in Global Distance Test (GDT)1 and
MaxSub.2 First, a protein size-dependent scale is
exploited to eliminate the inherent protein size
dependence of the previous scores and appropri-
ately account for random protein structure pairs.
Second, rather than setting specific distance cutoffs
and calculating only the fractions with errors below
the cutoff, all residue pairs in alignment/modeling
are evaluated in the proposed score. For compari-
son of various scoring functions, we have con-
structed a large-scale benchmark set of structure
templates for 1489 small to medium size proteins
using the threading program PROSPECTOR_3 and
built the full-length models using MODELLER and
TASSER. The TM-score of the initial threading align-
ments, compared to the GDT and MaxSub scoring
functions, shows a much stronger correlation to the
quality of the final full-length models. The TM-score
is further exploited as an assessment of all ‘new fold’
targets in the recent CASP5 experiment and shows a
close coincidence with the results of human-expert
visual assessment. These data suggest that the TM-
score is a useful complement to the fully automated
assessment of protein structure predictions. The
executable program of TM-score is freely download-
able at http://bioinformatics.buffalo.edu/TM-score.
Proteins 2004;57:702–710. © 2004 Wiley-Liss, Inc.

INTRODUCTION

The canonical comparative modeling/threading-based
protein structure prediction procedure consists of two
steps: (i) finding a solved structure related to the target
sequence (i.e. template)3–6 and (ii) building a full-length
model based on the template.7–10 The quality of the
resulting full-length model is usually assessed by the root
mean square deviation (RMSD)11,12 between equivalent
atoms in the model and native structures. However,
RMSD alone is not sufficient to estimate the quality of the
initial templates because the alignment coverage can be
very different in different approaches.3–6 Obviously, a
template with a 2 Å RMSD to native having 50% align-
ment coverage is not necessarily better for structure
modeling than one with a RMSD of 3 Å but having 80%
alignment coverage. While the template aligned regions
are better in the former because fewer residues are

aligned, the resulting full-length model might be of poorer
quality. The template assessment problem becomes particu-
larly relevant during the development of efficient fold
recognition algorithms, since different sequence–structure
alignment schemes or parameters can result in various
levels of alignment confidence with an associated loss or
gain of alignment coverage.3–6 Therefore, a single assess-
ment score that has an appropriate balance of alignment
accuracy and coverage and that is strongly related to the
quality of the final full-length model is essential. Equally
important, it must differentiate between a random and a
statistically significant prediction.

Highly related to the above problems, several interest-
ing scoring functions have been developed for the purpose
of sequence-dependent comparison of two structures of
different lengths (in contrast to sequence-independent
structure alignment algorithms).1,2,13–15 For example, with
MaxSub,2 Siew and coworkers tried to identify the maxi-
mum substructure in which the distances between equiva-
lent residues of two structures after superposition are
below some threshold value, such as 3.5 Å. Since the
MaxSub scoring function only counts those residues in-
cluded in the substructure, the spatial information of the
templates outside the substructure is omitted. For ex-
ample, Figure 1(a) shows the MaxSub superposition of the
native structure of 2sas_ and the template alignment (94%
coverage, which is the ratio of the number of aligned
residues to the number of target residues) obtained from
the threading program PROSPECTOR_3,6 where residue
pairs of distance �3.5 Å are highlighted in red (50%
coverage), with the remainder of the aligned residues in
yellow. The templates in Figure 1(b) (original alignment
having 94% coverage) and Figure 1(c) (the ‘well-aligned’
part with 50% coverage) therefore have the same MaxSub-
score, which is only associated with the set of red residues.
However, the facility of the templates for the final full-
length structure modeling can be significantly different.
Using the structure building program MODELLER,7,10 for
example, the template in Figure 1(b) results in a full-
length model with a RMSD from native of 4.4 Å, while the
template in Figure 1(c) results in a full-length model
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having a RMSD from native of 12.5 Å. By way of further
illustration, in a large-scale benchmark set of PROSPEC-
TOR_3 alignments (see below), there are 81 cases having
MaxSub-scores between 0.4 and 0.45. The RMSD values of
the final full-length models built from MODELLER vary
from 3.5 to 35.7 Å with a standard deviation of 4.8 Å. Thus,
there is no apparent correlation between the Maxsub-score
and the quality of the resulting full-length model.

In their GDT_TS scoring function, Zemla and cowork-
ers1,13 further identify multiple maximum substructures
associated with several different threshold cutoffs (e.g. 1,
2, 4, and 8 Å as used in the recent CASP5 experiment16).
The GDT_TS-score is defined as the average coverage of
the target sequence of the substructures with the four
different distance thresholds. Since the GDT_TS-score
focuses only on the size of the substructures, the detailed
match information of templates/models and native struc-
tures is partially missed (e.g. residues with deviations
ranging from 4.1–8 Å from native have identical contribu-
tions to the scoring function). Zemla13 further addressed
this problem by introducing more distance thresholds.

Another problem associated with these score functions is
the dependence of the score magnitudes on the evaluated
proteins’ size. In other words, one must address the issue
of what the corresponding score value of a pair of randomly
related structures would be. In Figure 2, we plot the
average MaxSub- and GDT-scores as a function of the
length of protein for random structure pairs in the Protein
Data Bank (PDB)17 that have pairwise sequence identity
of less than 30%. These scores show a power-law depen-
dence on the protein size. Obviously, a given absolute
score, such as GDT � 0.4 or MaxSub � 0.3, can reflect a
significant alignment for a target of 400 residues, but it is
close to a random selection in the PDB for a target of 40
residues. This significant size dependence renders the
absolute magnitude of these scoring functions meaning-
less.

The significant protein size dependence of structure
similarity for randomly related structure pairs has also

been observed by many authors when structure similarity
is measured by structure alignment18,19 or RMSD calcula-
tion.20,21 To eliminate the dependence on protein size,
Levitt and Gerstein18 and Ortiz and coworkers19 con-
verted their structure alignment score into a statistical
significance score, called the P-value, on the basis of the
statistics of their random structure database. For their
relative RMSD, Betancourt and Skolnick20 normalized the
RMSD by the average RMSD from random structure pairs
with similar size and radii of gyration. In the RMSD-100
score,21 Carugo and Pongor divided the RMSD by a factor
of 1 � �N/100, with N representing the protein length.

Fig. 1. (a) Superposition between the template and the native structure of 2sas from MaxSub. The native
structure is shown as thin backbone in white; the template is shown as thick backbone in yellow, which is from
Chain-A of 2scp in the PDB library17 hit by PROSPECTOR_3.6 The residues with pairwise distances lower than
3.5 Å are highlighted in red for both template and native. (b) The whole template alignment has 94% coverage.
(c) The substructure of the template alignment with a distance to native of less than 3.5 Å (‘well-aligned’ part)
has 50% coverage. The templates in (b) and (c) have the same MaxSub score of 0.434. However, using
MODELLER,7,10 the template in (b) results in a full-length model of RMSD 4.4 Å, while the template in (c)
results in a full-length model of RMSD 12.5 Å.

Fig. 2. The average MaxSub-scores (triangles) and GDT-scores
(circles) as a function of protein size. The data are calculated from all pairs
of 3656 proteins taken from PDB library17 that have �30% pairwise
sequence identity. The statistical error bars are smaller than the size of
the points. The solid and dashed lines are the nonlinear least square
Marquardt–Levenberg fit of the MaxSub and GDT data to a power-law
equation of f(L) � aLb, where L is the length of the smaller protein of the
corresponding structure pair. The fit parameters a and b are as indicated.
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In this article, we extend the above approaches and
develop a new scoring function for the assessment of
threading templates, which we call the template modeling
(TM) score. One of our purposes is to re-scale the structure
modeling errors so that the score value is independent of
protein size for randomly related structure pairs. Since
one of the most important uses of threading templates is to
facilitate the final structure modeling, our second goal
here is to have the scores of initial templates strongly
correlated with the quality of final full-length models.
Certainly, as has been noted by many authors,2,19,20

RMSD is not a perfect indicator of full-length model
quality. Besides the significant size dependence of random
structure pairs, when others parts of a model have large
prediction errors, the RMSD cannot identify well-pre-
dicted substructures. There are numerous other measure-
ments for protein modeling quality in the litera-
ture.1,2,15,19,20,22,23 With MAMMOTH19 for example, Ortiz
and coworkers assess structures by comparing both local
and global similarities. Here, as one of many possible
choices, we use a Z-score like expression of the relative
RMSD (rRMSD) to score the quality of the final full-length
models. We consider a large-score benchmark protein set
that covers the current PDB17 at 35% sequence identity for
all proteins of less than 200 residues. The TM-score, as
well as the Maxsub and GDT_TS scores, of the initial
templates are evaluated on the basis of their correlations
to the quality of the final full-length models in the bench-
mark targets built by the widely-used protein modeling
software MODELLER.7,10

MATERIALS AND METHODS
Scoring Function

Our scoring function is a variation of the Levitt–
Gerstein (LG) score,18 which was first used for sequence-
independent structure alignments:24

TM-score�Max� 1
LN

�
i�1

LT 1

1 � �di

d0
�2� (1)

where LN is the length of the native structure, LT is the
length of the aligned residues to the template structure, di

is the distance between the ith pair of aligned residues and
d0 is a scale to normalize the match difference. ‘Max’
denotes the maximum value after optimal spatial superpo-
sition. The value of the TM-score always lies between (0,
1], with better templates having higher TM-scores. A
similar formula is also used in MaxSub,2 but the summa-
tion is limited only to those residues with di � d0. Here, the
summation is over all of the template-aligned residues. In
LiveBench,15 Rychlewski and coworkers define a three-
dimensional-score that has a similar function but with a
different format from the LG-score. In their S-score,14

Cristobal and coworkers use the non-normalized LG-score,
including the gap penalty. As shown below, the number of
gaps in the template alignments has no correlation with
the quality of the final models.

The value of d0 has been taken to be constant in all of the
above approaches. For example, d0 � 3.5 Å in MaxSub,2

d0 � 5 Å in the S-score14 and the original LG-score.18,24 As
shown in Figure 2, these treatments result in a power-law
dependence of the score on the size of the proteins in
random protein pairs. In Figure 3, we calculate the
average TM-score for 3656 protein structures from the
PDB that have pairwise sequence identity �30%. If we
take d0 � 5 Å, which we call the ‘raw TM-score’ (rTM-
score), we find that it has a similar power-law dependence
on protein size as the MaxSub- and GDT-scores.

To rule out protein size dependence in the rTM-score,
let’s first make an approximate estimation of the average
structure match difference of random related structures.
In general, the RMSD of two structures (A and B) of
identical length of LN, can be written as

RMSD��RA
2 � RB

2 � 2
�irAi � rBi

��irAi
2 �irBi

2
RARB (2)

where RA (RB) is the radius of gyration for structure A (B),
rAi (rBi) is the coordinate vector after global superposition.
From the calculation of around 1300 non-homologous PDB
structures, Betancourt and Skolnick20 observed that the
average correlation coefficient for randomly related struc-
ture pairs follows as

c � � �irAi � rBi

��irAi
2 �irBi

2 � � 0.42 � 0.05LNe�LN/4.7 � 0.63e�LN/37 .

(3)

Keeping in mind that the average radius of gyration of
globular protein structures has a power-law dependence

Fig. 3. The average ‘raw TM-score’ (rTM-score) and TM-score of
random protein pairs as a function of protein size. For the rTM-score, d0 �
5 Å; for the TM-score, d0 is defined as in eq. (5). The data are calculated
from all pairs of 3656 PDB structures of �30% sequence identity. The
statistical error bars are smaller than the size of the points. The dashed
line is a nonlinear least square Marquardt–Levenberg fit of the rTM-score
data to a power-law equation f(L), where L is the length of the smaller
protein of the corresponding structure pairs. The solid line denotes the
horizontal line of TM-score � 0.17.
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on the length8 (i.e. �R� � LN
0.39), we can estimate the

average distance of corresponding residue pairs of random
related proteins in the TM-score superposition:

�di� 	 LN
0.39�1 � 0.42 � 0.05LNe�LN/4.7 � 0.63e�LN/37 � h .

(4)

Here the constant h is introduced because the average
distance of the optimal local structure matches in TM-
score calculations is always smaller than that of the global
matches in RMSD calculations (see below). When h � 0.75,
eq. (4) can be well approximated by a simpler formula

d0 � 1.24�3 LN � 15 � 1.8 , (5)

which drops, for example, from 6.4 to 2.3 Å when LN

changes from 300 to 50 residues. As shown in Figure 3, the
TM-score of d0 defined as in eq. (5) has an approximately
constant value of �0.17, independent of protein size for the
random structure pairs.

Search Engine

To find the spatially optimal superposition of the tem-
plate and the native structure that has the maximum (or
close to the maximum) TM-score according to eq. (1), we
use an iterative search algorithm, similar to that used by
Zemla and coworkers,1 Siew and coworkers,2 Ortiz and
coworkers19 and Kihara and Skolnick.25

Starting with an initial fragment of the template that
consists of Lint neighboring aligned residues, we super-
posed the fragment to the corresponding residues of the
native structure according to Kabsch’s rotation ma-
trix.11,12 Then, we collected all of the residues of the
template with distance to native of less than d0 and
superposed this set of residues onto the native structure
again. The process was repeated till the rotation matrix
converged.

Since the converged superposition is usually sensitive to
the initial selection of the fragment Lint, we ran an
iterative process with Lint � LT, LT/2, LT/4, L, 4, respec-
tively. When Lint � LT, we ran all the iterations with the
location of initial fragments shifting continuously from the
N- to the C-terminus. The rotation matrix with the highest
TM-score was selected.

As confirmation of the optimization procedure, we ran
the search engine about three times longer with additional
randomly selected initial fragments for the abovemen-
tioned 1489 targets. There were only 92 (�6%) cases with
different TM-scores, all with a difference of less than
0.002. Based on the high convergence of the rotation
matrix, we feel quite safe concluding our search engine is
optimal or close to optimal for score maximization.

Z-Score of Relative RMSD

Bearing in mind the size and radius of gyration depen-
dences of the RMSD as presented in eqs. (2 and 3),
Betancourt and Skolnick20 defined a relative RMSD
(rRMSD) to eliminate the dependencies:

rRMSD�
RMSD

�RA
2 � RB

2 � 2cRARB
. (6)

which is just the ratio of the RMSD values of the structures
of interest to the average RMSD of a pair of randomly
related structures of the same radii of gyration. The
standard deviation of the rRMSD for the random structure
pairs is20

	 � 0.09 � 1.16e�LN/1.6 � 0.25e�LN/36 (7)

In our calculations, a Z-score like deviation of rRMSD to
mean (which has a value of 1) is defined as

Z-rRMSD�
rRMSD�1

	
. (8)

RESULTS AND DISCUSSION
Benchmark Set of Targets and Templates

For a reliable evaluation of the scoring functions, we
constructed a comprehensive benchmark protein set, which
includes 1489 test proteins and covers the PDB library
with lengths from 41 to 200 residues at 35% sequence
identity. A list of the 1489 proteins is available at our
website: http://www.bioinformatics.buffalo.edu/abinitio/
1489.

For each target, the template structures were obtained
using our threading program PROSPECTOR_3,6 which
was designed to match the target sequence to a non-
homologous solved structure library culled from the PDB.17

Template proteins whose sequence identity to the targets
is 
30% were excluded from the library. The highest
scoring template from the PROSPECTOR_3 alignment
was selected.

TM-Score Distribution of Templates

In PROSPECTOR_3,6 if a template alignment has a
Z-score, an energy in standard deviation units relative-to-
mean above 15, or if the alignment has a Z-score above 7
and is structurally in consensus with other template
alignments of similar Z-score, the alignment usually has a
high possibility of being correct. It is therefore designated
as an ‘Easy’ target according to PROSPECTOR_3,6 since it
should be easier for the modeling refinement than those
targets that have lower Z-scores (typically with shorter
alignment length and poorer alignment quality), which are
designated as ‘Medium/Hard’ targets. In Figure 4(a), we
show the TM-score distribution of threading templates in
two different categories. As expected, the majority of the
‘Easy’ targets have TM-scores above 0.4, while most ‘Me-
dium/Hard’ targets have TM-scores below 0.4, with an
obvious gap between the ‘Easy’ and the ‘Medium/Hard’
target distributions.

As a control, we also present in Figure 4(a) the distribu-
tion of the templates identified from the structure align-
ment program SAL25 that structurally aligns the native
structures to the same template library as PROSPEC-
TOR_3 and returns the structures with the highest Z-
rRMSD scores to native as defined in eq. (8). In the ‘Easy’
set, where the ‘gold standard’ structure alignment has
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sequence identity around 17%, the TM-score distribution
of PROSPECTOR_3 is quite similar as that of SAL align-
ments, except for the tail-region where PROSPECTOR_3
has slightly more instances in which the TM-score is less
than 0.4. For ‘Medium/Hard’ cases, where the ‘gold stan-
dard’ structure alignment has a sequence identity around
9%, far below the ‘twilight zone’ of sequence identity, the
current version of PROSPECTOR_3 fails in most cases:
77% of the cases have a TM-score less than 0.4; 32% of the
cases have a TM-score less than 0.17, which means the
threading alignment does not provide more information
than a random selection for those targets. Of course, this
result is consistent with the scoring system of PROSPEC-
TOR_3, since the category is defined according to its
alignment confidence.

The alignment difference between the real threading
and the ‘gold standard’ structure alignment also manifests
itself in their sensitivities to the target protein size. As

shown in Figure 4(b), the TM-score of the SAL alignment
has almost no size dependence after introduction of the
size-dependent scale as in eq. (5). On the other hand, the
PROSPECTOR_3 alignment has obviously lower TM-
scores for small targets than for larger ones, which high-
lights the difficulty of the current alignment method in
dealing with small proteins. On the other hand, because of
using the constant cutoff/scale for the match differences,
the SAL alignment shows significant size-dependence
when evaluated by MaxSub- or GDT-scoring functions [see
Fig. 4(b)].

Correlations Between Scoring Functions and Final
Full-Length Models

To evaluate how the scoring functions are related to the
ability to construct full-length models from the initial
templates, we built full-length models using the PROSPEC-
TOR_3 templates as the only input. For the purpose of
generality and clearness of the evaluation, we employed
one of the most widely used modeling software programs,
MODELLER, which is designed to build full-length models
by optimally satisfying the spatial restraints extracted
from the input templates.6,10 This algorithm is representa-
tive of a general set of approaches exploited by different
authors.7–9,26–29

Figure 5(a–c) show, respectively, the TM-score, the
MaxSub-score and the GDT_TS score of the threading
templates as the function of the Z-rRMSD of the final
full-length models built by MODELLER. Here, we only
present those targets (1048 of 1489) for which MOD-
ELLER could generate a model whose Z-rRMSD to native
was below �1, since for structure pairs of too weak
similarity the scoring assessment becomes less relevant.
There is an obviously stronger correlation between the
TM-score and the quality of final full-length models than
between either of the other two scoring functions and the
final models. To be more precise, we define the correlation
coefficient as

C �
�SZ� � �S��Z�

���S2� � �S�2���Z2� � �Z�2�
(9)

where S and Z respectively represent the scoring functions
of the initial templates and the Z-rRMSD to native of the
final full-length models. The average of �…� only includes
those targets whose final model have Z-rRMSD values less
than �1. Based on Figure 5(a–c), the TM-score has the
highest correlation coefficient (�0.891) to the Z-rRMSD of
final models among all three scoring functions, with the
GDT_TS-score (�0.751) slightly better than the MaxSub-
score (�0.746).

In Figure 5(d), we divide the Z-rRMSD space into 20
bins and calculate the fluctuations of the scoring functions
of the initial templates for each Z-rRMSD bin. In general,
the standard deviation of the template scores tends to
increase with the Z-rRMSD values of the final models.
Consistent with the correlation coefficients, the TM-score
has the smallest dispersion for a given Z-rRMSD value of
the three scores. The dispersions are similar for the
GDT-score and MaxSub-score for very good Z-rRMSD

Fig. 4. (a) TM-score distributions for templates obtained from the
threading program PROSPECTOR_36 and the structure alignment pro-
gram SAL.25 The templates are categorized into ‘Easy’ (877 cases) or
‘Medium/Hard’ (612 cases) sets according to their alignment confidence
by PROSPECTOR_3. (b) Average scoring function versus protein size.
The different templates evaluated by the different scoring functions are
labeled by different types of points. The lines connecting the points serve
to guide the eye.
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models. When the absolute value of Z-rRMSD decreases
(or the quality of templates becomes worse in general), in
comparison with the MaxSub-score, the GDT-score, be-
cause of its multiple threshold cutoff resolutions, is more
indicative of final model quality. Starting with a Z-rRMSD
greater than �5.3, the MaxSub-score is 0 for some of the
templates, showing no sensitivity to the quality of final
models for those targets.

Among all 1489 targets, 50% have threading templates
with a TM-score above 0.48. If we consider a successfully
predicted final model as one with a Z-rRMSD value less
than �5, then the false positive rate for templates whose
TM-scores are greater than 0.48 is 16.5%, and the false
negative rate for the templates whose TM-scores are less
than 0.48 is 4.1%. Similarly, 50% of the targets have
threading templates with MaxSub-scores above 0.42. Us-
ing the same maximum Z-rRMSD of �5 as the threshold
for successful predictions produces a false positive rate
and a false negative rate for the MaxSub-score of 23.5%
and 9.2%, respectively. For the GDT-score, 50% of the

targets have threading templates with a GDT-score greater
than 0.475, and the false positive and false negative rates
are 23.0% and 7.9%, respectively. Thus, on the basis of its
ability to select models whose quality is better with the
fewest false positives and false negatives, the TM-score is
best, with essentially identical performance exhibited by
both the Maxsub and the GDT scores.

Gap Density of Template Alignments

One of the differences between the TM-score and the
original LG-18 and S-score14 formulas is that a gap penalty
of �10  Ngap is included in the latter scores, where Ngap is
the number of alignment gaps. This inclusion of the gap
penalty can result in negative scores in some alignments.

For the purpose of further examining the TM-score, we
checked the average effects of the number of gaps found in
the template alignments on the final modeling results. We
defined a normalized gap number (or gap density) as the
ratio of Ngap to the number of aligned residues, where Ngap

is calculated as Nfra � 1. Nfra denotes the number of
continuous fragments consisting of more than two resi-
dues. The data show that there is essentially no correla-
tion between the gap density and the Z-rRMSD of final
model (with a correlation coefficient of �0.004).

We also examined different ways to combine the gap
penalty into eq. (1); none improved the correlation between
the TM-scores and the Z-rRMSD of the final full-length
models. The reason could be that in most model building
programs,7–9,26–29 including MODELLER, the quality of
the final models is dictated by the tertiary spatial re-
straints extracted from the templates to give global fold
information; such information is insensitive to the number
of gaps in the alignment.

Automated Assessment of Protein Structure
Prediction

As shown in the recent CASP experiments (Critical
Assessment of Structure Prediction),16,30,31 the accurate
and automatic evaluation of the predicted tertiary models
is not a trivial problem, because in lower quality models
different metrics are sensitive to different features. In
CASP5, the assessors developed various combined scoring
functions that were efficiently used in the automatic
assessment of comparative modeling32 and fold recogni-
tion target predictions.33 However, for difficult targets,
especially those ‘New Fold’ targets, human visual assess-
ment is usually necessary.34

Although the major purpose of the development of the
TM-score in this work is to evaluate the relationship
between partially aligned templates and the resulting
final full-length models, we also explore the assessment
power of the TM-score based on the quality of full-length
models, especially for the hard New Fold targets. Because
of the weak similarity of those models to the experimental
structures and the lack of biological insight, here we use
the human-expert evaluation in CASP5 as the ‘gold stan-
dard.’

In Figure 6, we rank the first predicted model submitted by
different groups of all five new fold targets, i.e. T0129,

Fig. 5. (a–c) Template scoring functions versus the Z-rRMSD values
of the final full-length models built by MODELLER.7,10 (d) Standard
deviation of the template scoring functions as a function of Z-rRMSD of
the final full-length models.

SCORING FUNCTION FOR TEMPLATE QUALITY 707



T0149_2 (203–318), T0161, T0162_3 (114–281), and T0181,
downloaded from the CASP5 webpage: http://prediction-
center.llnl.gov/casp5/pubResultS/CASP_BROWSER/ and cal-
culate the scoring functions of these models on the basis of
TM-score (Column I), MaxSub-score (Column II), and GDT-
score (Column III). According to the human visual evalua-
tions by Aloy and coworkers34 (data from http://www.russel-
l.embl.de/casp5/NF/Table2_1st.html), the models were given
2 points (‘excellent’) when the visual assessment found that
the overall fold was correct, or 1 point (‘good’) when the
models were deemed to be partway to the correct fold and all
others were given a score of 0. Among all the submitted
models for the five new fold targets, there were three models
in Aloy and coworkers’ evaluation that received an ‘excellent’
score and seven models that received ‘good.’ These models are

highlighted in Figure 6 as solid squares (excellent) and solid
circles (good).

As shown in Column I of Figure 6, almost all of these
successfully predicted models according to human visual
assessments have obviously higher TM-scores than other
predictions that were assigned by human-expert as incor-
rect. The TM-score of models labeled as ‘excellent’ are also
scored somewhat higher than those labeled as ‘good.’ In
general, using either the TM-score or the GDT-score can
discriminate the excellent/good models from incorrect mod-
els; this is not the case when the MaxSub-score is used.
However, there are still some examples, such as T0162, for
which the GDT-score of the good model is lower than the
GDT-scores of many incorrect models (see Row 4, Column
III in Fig. 6).

Fig. 6. Scoring functions of the first predicted model of five ‘New Fold’ targets in CASP5.16 The horizontal
axis is the order number of the predictions, which differentiates the predictions from different groups. The solid
squares and solid circles denote, respectively, those predictions assigned by human visual assessment as
‘excellent’ and ‘good.’34
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Table I lists the automated rank of all ten successfully
predicted models according to TM-score, GDT-score and
MaxSub score respectively. Consistent with the data in
Figure 6, TM-score assessments have a slightly better
average rank (2.1) than do GDT-scores (3.6); both are
much better than the average rank of MaxSub-score
assessments (13.1).

CONCLUSIONS

We have developed a new scoring function for the
automated evaluation of protein structure predictions.
First, the modeling errors are normalized by a protein size
dependent scale so that the average TM-score of random
protein pairs has no bias to the target protein’s length,
which sets up a minimum threshold, i.e. a TM-score
0.17,
for any meaningful threading alignments or final model
predictions. Second, rather than using specific distance
cutoff and focusing only on the fractions of structures as
what was done in the MaxSub- or GDT-scoring function,
all the residues of the modeled proteins are evaluated in
the TM-score.

For the purpose of an objective evaluation, we construct
structure templates for a large-scale benchmark set of
proteins from our threading program PROSPECTOR_3,6

and build the full-length models using the widely used
program MODELLER.7,10 The reason we selected MOD-
ELLER is that its methodology forms the basis of many
comparative modeling tools7–9,26–29 and it is extensively
used by structural biologists.35 Based on the modeling
results, the TM-score shows a stronger correlation to the
quality of the final full-length models than the MaxSub-
score2 or the GDT_TS-score.1,13 We also randomly selected
200 proteins in the benchmark set and rebuilt them using
a different modeling algorithm, TASSER,36 which is de-
signed to assemble full-length models by rearranging the
continuous fragments from initial template alignments
and which has the ability to refine the aligned residues to
make them closer to the native structure. The results are
qualitatively similar to those obtained here using MOD-
ELLER, although the average correlations of all the three

scores are slightly weaker in the TASSER refinements.
(This is because TASSER generates better final models of
lower RMSD to native on average.) This demonstrates that
the features of templates described by the TM-score are
not sensitive to the specific refinement methods. Obvi-
ously, the TM-score is much faster and more convenient to
use in the judgment of the template quality than any real
full-length modeling refinement program.

The reason that the TM-score shows a closer correlation
between the initial template alignments and the final
models than does the MaxSub-score is that the TM-score
counts the template information of both high accuracy
aligned regions and low accuracy aligned regions, while
the MaxSub score neglects the alignment information
included in the low accuracy aligned regions that could be
of assistance in global modeling. On the other hand, unlike
the RMSD in which the prediction errors are averaged
with equal weights for all residues, the TM-score uses the
LG-factor that weights the low and high accuracy regions
differently. This also allows the TM-score to provide a
more sensitive measure than the GDT-score. This assess-
ment is validated by the lower false positive and negative
rates for full molecule assembly when TM is used to
identify good template alignments compared to either the
Maxsub or the GDT scores. .

We further exploit the TM-score to the evaluation of
predicted full-length models of the five available ‘New
Fold’ targets in CASP5.16 The rank of the TM-score of the
first predicted models closely coincides with the rank by
the human-expert visual analysis of Aloy and coworkers.34

The average rank of all ten successfully predicted models
is 2.1 by the TM-score (3.6 by GDT-score, 13.1 by the
MaxSub-score). This result suggests that the TM-score
may also be used as a useful complement to the automated
assessment of protein full-length structure predictions.

The TM-score program is freely downloadable at http://
bioinformatics.buffalo.edu/TM-score. For the users’ conve-
nience, the program also provides options for the output of
MaxSub-scores and GDT_TS-scores, based on the same
search engine as the TM-scores. For structures of around
200 residues, the calculation takes less than 1 s on a 2.4
GHz Pentium-4 processor.
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