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Most proteins exist with multiple domains in cells for cooperative
functionality. However, structural biology and protein folding
methods are often optimized for single-domain structures, result-
ing in a rapidly growing gap between the improved capability for
tertiary structure determination and high demand for multidomain
structure models. We have developed a pipeline, termed DEMO, for
constructing multidomain protein structures by docking-based do-
main assembly simulations, with interdomain orientations deter-
mined by the distance profiles from analogous templates as
detected through domain-level structure alignments. The pipeline
was tested on a comprehensive benchmark set of 356 proteins
consisting of 2–7 continuous and discontinuous domains, for which
DEMO generated models with correct global fold (TM-score > 0.5)
for 86% of cases with continuous domains and for 100% of cases
with discontinuous domain structures, starting from randomly ori-
ented target-domain structures. DEMO was also applied to reassem-
ble multidomain targets in the CASP12 and CASP13 experiments
using domain structures excised from the top server predictions,
where the full-length DEMO models showed a significantly im-
proved quality over the original server models. Finally, sparse re-
straints of mass spectrometry-generated cross-linking data and
cryo-EM density maps are incorporated into DEMO, resulting in im-
provements in the average TM-score by 6.3% and 12.5%, respec-
tively. The results demonstrate an efficient approach to assembling
multidomain structures, which can be easily used for automated,
genome-scale multidomain protein structure assembly.
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Protein in cells frequently consist of multiple domains, each
representing a compact and independent folding unit. Al-

though protein domains often perform their functions separately,
appropriate interdomain organization is critical to facilitate the
implementation of multiple (and often related) functions in a co-
operative way. Meanwhile, many biological functions rely on the
interaction of different domains; for example, the protease activity
of a chymotrypsin is mediated by the active sites buried at the in-
terface between their domains (1). Statistics has shown that at least
80% of eukaryotic proteins and 67% of prokaryotic proteins con-
tain more than 2 domains (2). Determining full-length structure of
multidomain proteins is thus a crucial step in elucidating their
functions and designing new drugs to regulate these functions.
However, due to the technical difficulties in structural biology,

to date most of the multidomain proteins have only single domain
structures solved. Currently, only 34.7% of the 608,044 protein
chains solved in the Protein Data Bank (PDB) contain multiple
domains. Similarly, almost all of the advanced protein structure
prediction methods, such as I-TASSER (3–5), QUARK (6), and
Rosetta (7, 8), are optimized for modeling single-domain proteins
in both force field design and conformational search. These
methods result in a significant gap between the (increasingly im-
proved) ability of single-domain structure determination and the
high demand of the biomedical community for high-resolution
multidomain protein structures.

Despite the importance of multidomain structure modeling,
there have been very few methods dedicated to this approach.
Among them, AIDA (9) and Rosetta (10) focus mainly on con-
struction of the linker models with domain orientations loosely
constrained by some physical terms from generic hydrophobic
interactions; this leaves the domain structures largely randomly
oriented in the final model. Different from the linker-based
methods, in a rigid-body docking approach, which we present
here, the domain structures are assembled by sampling the de-
grees of freedom of interdomain interactions instead of the
domain linkers.
Two major issues/questions should be considered in the rigid-

body domain assembly approaches. First, can we deduce correct
domain orientations from other known multidomain proteins, as
template-based tertiary structure modeling approaches typically
do? Second, can we assemble multidomain models with im-
proved quality over the models built directly from full-length
modeling simulations?
To address these questions, we have developed a domain-

enhanced modeling (DEMO) approach to construct multido-
main protein models by rigid-body assembling of single-domain
models, with the interdomain orientations constrained by the
distance profiles from templates detected through local and
global structural alignments (Fig. 1). To carefully examine the
strengths and weaknesses of this approach, we tested DEMO on
2 large sets of multidomain proteins containing various numbers
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of continuous and discontinuous domains. The results show that
the analogy template-guided domain assembly approach can
generate more accurate models for the majority of proteins
compared with the state-of-the-art linker-based approaches. It
can also create full-length structural models for proteins with
partially aligned templates with a quality significantly beyond
that of traditional full-length folding simulations. DEMO can be
used to assemble both experimentally solved and computation-
ally predicted domain structures. The procedure for DEMO is
fully automated, and the online server and stand-alone program,
together with all datasets used in the study, are freely available at
https://zhanglab.ccmb.med.umich.edu/DEMO/.

Results and Discussion
Completeness of Multidomain Protein Structure Library. To infer
initial domain orientation in DEMO, a nonredundant structure
library was constructed by collecting all multidomain proteins
from the PDB (12) with a 70% pairwise sequence identity cutoff.
The domain structures are primarily recognized by DomainParser
(13), where multidomain proteins defined in CATH 4.1 (14) and
SCOPe 2.06 (15) are also included if they have a sequence iden-
tity <70% or a TM-score <0.5 (16) to the DomainParser proteins
(details in SI Appendix, Text S1). This resulted in a total of
15,293 template proteins in the library.
To examine the completeness of the library in the domain

space, we collected a comprehensive set of 2,269 target proteins
from the library at the 30% sequence identity cutoff and struc-
turally matched them through the library using TM-align (11). SI
Appendix, Fig. S1 summarizes TM-scores and alignment cover-
ages of the templates identified for all of the target proteins, with
close templates with sequence identity >30% to the targets ex-
cluded. It is shown that >80% of target proteins have at least
1 template with a TM-score >0.5 and alignment coverage >90%,
confirming that most interdomain orientations can be inferred
from the template library.

Overall Results of DEMO Modeling on Experimental Domains. To test
DEMO, we collected a comprehensive set of benchmark pro-
teins by separately clustering the proteins with different domain
types and structures from the template library with a 30% se-
quence identity cutoff. This benchmark set contained 356 pro-
teins, including 166 2-domain (2dom), 69 3-domain (3dom), 40 ≥
4-domain (m4dom), and 81 discontinuous-domain (2dis) pro-
teins. Here a discontinuous domain was defined as that con-
taining 2 or more segments from separate regions of the query
sequence (SI Appendix, Fig. S10). The maximum number of
domains in m4dom was 7. In addition, 425 nonredundant pro-
teins with a sequence identity <30% to the benchmark proteins
were selected from the library to train the DEMO potential
(Methods); this training set included 197 2dom, 111 3dom,
66 m4dom, and 51 2dis proteins.
In this test, we reassembled the individual domain structures

partitioned from the experimental structure according to the
domain boundary defined by DomainParser, CATH, or SCOPe.
The initial domain structure was randomly rotated and translated
before assembly, with templates with a sequence identity >30% to
the query excluded. Table 1 summarizes the DEMO modeling re-
sults, showing average TM-scores of 0.78 for 2dom, 0.67 for 3dom,
and 0.53 for m4dom proteins. These results demonstrate DEMO’s
ability to assemble domains with a smaller number of domains. This
is understandable, because it is usually harder to find a global
template that covers all individual domains when the number of
domains increases. In addition, the degrees of freedom increase for
proteins of more domains, which increases the search space of
domain assembly simulations. Nevertheless, the overall quality of
the multidomain models was acceptable, with an average TM-score
of 0.62 for proteins with 3 or more domains, 65% of which had
a TM-score >0.5.
Interestingly, the TM-score for discontinuous domains, the

structures of which are generally considered difficult to model,
had the highest average TM-score (0.84) of all categories. This is
probably due to the greater interdomain distance restraints used
for guiding the assembly simulations in these cases, as proteins
of discontinuous domains contain tighter interdomain coupling
from experimental structures compared with proteins of con-
tinuous domains. Meanwhile, the connectivity of linker regions
between the discontinuous and inserted domains provides addi-
tional anchor restraints on the domain orientations (SI Appendix,
Fig. S10). Table 1 also lists the RMSD of the full-length model
and the RMSD of interface residues (iRMSD), which have a Cα

distance between different domains of <10 Å. Similar trends

Fig. 1. Flowchart of DEMO for rigid-body protein domain assembly. Start-
ing from individual domain structures, templates are first identified by
structurally threading the domains through a nonredundant multidomain
structural library using TM-align (11). Replica-exchange Monte Carlo simu-
lations are then used to assemble the domain structures under the guidance
of template-based distance profiles (as well as CL and cryo-EM data if
available), with models with lowest energy selected for linker reconstruction
and side chain refinement. For 3 or more domain assemblies, a global
structural refinement simulation is performed following the consecutive
pairwise domain assembly.

Table 1. Summary of domain structure assembly using
experimentally solved domains on 356 test proteins

Domain Method TM-score RMSD, Å iRMSD, Å No.of clashes

2dom (N = 166) DEMO 0.78 7.3 5.5 0.59
AIDA 0.68 12.3 9.2 5.09

Modeller 0.63 13.3 11.3 5.08
3dom (N = 69) DEMO 0.67 10.7 6.2 1.60

AIDA 0.52 18.1 11.8 9.17
Modeller 0.49 19.9 14.6 3.70

m4dom (N = 40) DEMO 0.53 16.9 12.8 3.79
AIDA 0.42 23.6 16.7 14.51

Modeller 0.38 28.3 20.9 16.78
2dis (N = 81) DEMO 0.84 5.5 3.8 1.18

AIDA 0.71 9.7 7.4 8.11
Modeller 0.67 11.2 8.7 5.56

All (N = 356) DEMO 0.74 8.6 6.1 1.28
AIDA 0.63 14.1 10.1 7.63

Modeller 0.58 15.8 12.4 6.24

Bold result indicates the best one. N, number of proteins.
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were observed for iRMSD and RMSD; that is, proteins with a
smaller number of domains (or with discontinuous domains)
have lower iRMSD and RMSD compared with proteins with a
larger number of domains (or with continuous domains).
As a control, Table 1 also shows the model results constructed

by AIDA (9) and Modeller (17) from the same set of domain
structures. Here AIDA is the only program available for multi-
domain assembly. In Modeller, the full-length models are cre-
ated using experimental domain structures as the input templates.
Generally, DEMO models have a higher TM-score and lower
iRMSD/RMSD than the models from the control methods in all
categories of domain structures. Overall, the TM-score of the
DEMO models (0.74) is 17.5% higher than that produced by
AIDA (0.63) and 27.6% higher than that produced by Modeller
(0.58). The respective P values on Student’s t test of 4.1E-38 and
4.9E-53 indicate statistically significant differences between the
methods. In addition, as an examination of local quality, DEMO
models have on average much fewer interdomain steric clashes
(1.28) than either AIDA (7.63) or Modeller (6.24).
Fig. 2 A and B show the scattering points for the TM-score of

DEMO versus that of AIDA and Modeller, respectively. It can
be seen that DEMO achieves a higher TM-score than AIDA
and Modeller in 279 and 302 cases, respectively, while AIDA and
Modeller achieve the highest TM-score in only 77 cases and
54 cases, respectively. Accordingly, in 171 cases, DEMO has a
TM-score >0.75, a rate 117% higher than that of AIDA and
317% higher than that of Modeller. Fig. 2 C and D also show the
average TM-score and iRMSD histograms in separate cate-
gories, which again show that DEMO is able to assemble more
accurate full-length models for proteins of different types of
domains.

DEMO Improves Domain Orientations of Initial Templates from Structural
Alignments. Since DEMO assembles multidomain structures under
guidance of the templates identified by TM-align, it is of interest to

examine whether DEMO has the ability to draw the initial templates
closer to the native structure. Fig. 3 A and B presents TM-scores and
RMSDs of the first DEMO models and the top-ranked template,
respectively. Because assemblies of proteins with 3 or more domains
are treated as consecutive 2-domain protein assemblies in DEMO,
the figure shows results only for 2dom and 2dis proteins.
Fig. 3A shows that 99% of proteins were improved by DEMO

for both 2dom and 2dis proteins in terms of TM-score. When
considering the RMSD in the same aligned regions, DEMO
improved the initial models in 92% of cases. This improvement
had an RMSD >1 Å in 74% of the cases and of 5 Å in 30%
(Fig. 3B).
This significant improvement in the templates may be attrib-

uted in part to the fact that input domains were from an ex-
perimental solution, while domains in the templates were from
nonnative proteins. To eliminate this effect, we constructed a
hybrid model set by superimposing the native domain structures
onto the initial templates. The results show that the average TM-
score of the DEMO models is still significantly higher than that
of the hybrid models (0.80 vs. 0.75; P = 3.2E-14). Meanwhile, the
DEMO models have a lower number of clashes (0.78) and
iRMSD (5.0 Å) compared with the hybrid models (4.1 and 11.8 Å,
respectively) (SI Appendix, Fig. S2B).
The second and likely more dominant reason for the im-

provement is the use of consensus distance profiles collected
from multiple templates, which often have greater accuracy
compared with the individual templates (18). Fig. 3 C and D
presents illustrative examples from the VirB11 ATPase (PDB ID
code 2gzaC), a 2dom protein, and VgrG Vibrio cholerae toxin
(PDB ID code 4dtfA), a 2dis protein, respectively. The average
error of the interdomain distances extracted from multiple
templates is 7.2 Å for 2gzaC and 8.0 Å for 4dtfA, significantly
lower values than extracted from the top-rank templates (11.6 Å and
14.6 Å, respectively). Accordingly, the TM-score of the tem-
plates was increased by 46.3% and 60.0%, respectively, and
RMSD was reduced by >13 Å in the 2 examples.

Assembly of Predicted Domain Models from I-TASSER. Because most
proteins do not have experimentally solved domains, it is im-
portant to examine the ability of DEMO to assemble domains
from low-resolution protein structure prediction. Table 2 sum-
marizes the full-length model results using domain struc-
tures predicted by I-TASSER (5). Here, when generating the
I-TASSER domain models, all homologous templates with a
sequence identity >30% to the query have been excluded. For
discontinuous domains that contain multiple segments (e.g.,
Domain-I in SI Appendix, Fig. S10), an artificial continuous se-
quence is formed by sequentially connecting the sequences of all
segments and then inputting them to I-TASSER for modeling,
where residues are reindexed to match the original atomic order
after modeling is completed. The original DEMO test dataset
involves a total of 81 discontinuous domains, in which the av-
erage TM-score of the I-TASSER models is 0.57, generally
comparable to that of the continuous domains (0.61), showing
the feasibility of I-TASSER for modeling the discontinuous do-
main structures. To clearly check the effect of domain assembly
and rule out the negative impact from incorrect domain models,
the data focus only on cases with all domain folds correctly
predicted by I-TASSER with a TM-score >0.5; these include 116
2dom proteins, 47 3dom proteins, 24 m4dom proteins, and 41
2dis proteins. The average TM-score for these I-TASSER do-
main models is 0.77.
It is shown again that the average TM-score of the DEMO

models decreases with an increasing number of domains, due to
the increased degrees of freedom and searching space in domain
orientations. However, different from that on experimental do-
mains, the model quality for 2dom targets is better than that of
2dis proteins when I-TASSER models are used. This is probably

Fig. 2. Summary of full-length models assembled from experimental do-
main structures by different methods. (A) TM-scores of models by DEMO and
by AIDA. (B) TM-scores of models by DEMO and by Modeller. (C) Boxplot for
TM-score of models by DEMO, AIDA, and Modeller. The square and solid
vertical lines represent the mean and median TM-scores, and crosses on the
top and bottom are the maximum and minimum TM-scores, respectively. (D)
Percentage of proteins at different iRMSD thresholds. Red, blue, and green
columns represent the results of DEMO, AIDA, and Modeller, respectively.
(a)–(d) 2dom, 3dom, m4dom, and 2dis proteins, respectively.
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because the I-TASSER models can have various errors in the
domain structures (including the tail and linker regions). Therefore,
including additional restraints from the noisy interdomain linkers
and anchor points does not improve the models for proteins of
discontinuous domains.
Nevertheless, the DEMO models compare favorably with the

models by the control methods in all categories of proteins, with
the average TM-score of 0.61 being 22.0% higher than that of
AIDA (0.50) and 32.6% higher than that of Modeller (0.46); the
P value on Student’s test is 2.6E-36 and 3.2E-49, respectively,
relative to AIDA and Modeller, showing statistically significant
differences. Overall, there are 154 cases in which DEMO models
have a TM-score >0.5, compared with 110 such cases for AIDA
and 76 for Modeller (SI Appendix, Fig. S3). Meanwhile, average
iRMSD (or RMSD) and the number of steric clashes of the
DEMO models are also lower than those of the AIDA and
Modeller models, showing better local qualities achieved by
DEMO compared with the control methods.
Fig. 4 presents 3 representative examples from the xylulose

kinase (PDB ID code 3ifrA), a 2dom protein; pseudouridine
synthase TruD (PDB ID code 1sb7B), a 2dis protein; and My-
cobacterium tuberculosis Transketolase (PDB ID: 3rimA), a
3dom protein. Although the domain models from I-TASSER
have correct fold (TM-score >0.5), there are various local er-
rors along the models, with an average RMSD of 6.8 Å, 10.9 Å,
and 16.6 Å, respectively. However, the TM-align search based on
individual domain structure alignments identifies correct multi-
domain templates with a reasonable TM-score—0.91, 0.75, and
0.81, respectively, for the 3 targets respectively. This is probably
due to the inherent correlation between the structural similarity
of local domains and that of global structures. Under the re-
straints of these templates, DEMO constructed final full-length
models of TM-scores 0.93, 0.84 and 0.90, which are significantly
higher than those of AIDA (0.54, 0.52, and 0.50) and Modeller
(0.49, 0.55, and 0.46). The success shown in these examples was
due mainly to the identification of correct global templates, the
quality of which was further improved through local domain
structure packing and refinement.

Domain Assembly Outperforms Whole-Chain–Based Modeling. A
classical problem in template-based multidomain protein struc-

ture prediction is that threading alignment often cannot identify
homologous templates that cover all domain regions, although it
may recognize single-domain templates well (19). Thus, structural
models need to be created for individual domains and then as-
sembled into full-length models. To examine DEMO’s ability to
address problems in such cases, we collected a separate set of 228
2dom proteins that have at least 1 domain with alignment cov-
erage <30% in the whole-chain–based threading alignment by
HHsearch (20). Proteins in this dataset are nonredundant, with a
sequence identity <30% to one another, and are also non-
redundant with the 425 training proteins used to train DEMO.
We first use I-TASSER to generate 3D structure models for

each of the individual models, excluding all close templates with
a sequence identity >30% to the target. This results in an aver-
age TM-score of 0.64 for all 456 (228 × 2) domains, 350 of which
have a TM-score >0.5. Table 3 summarizes the results for the
full-length models assembled by DEMO from the I-TASSER–
predicted single-domain models. The DEMO models have an av-
erage TM-score of 0.53 and the global fold is correct, with 136 cases
with a TM-score >0.5. This compares favorably with the full-length
models built directly by I-TASSER simulation, which have an
average TM-score of 0.47 but with only 104 cases with a TM-
score >0.5 (Fig. 5A).
There are 2 main reasons for the superior performance of the

DEMO-based pipeline. First, the domain split allows I-TASSER
to detect domain-specific templates and thus construct better
models for individual domains, because many proteins in the
PDB were solved as individual domains. When looking at the
first templates of the 456 domains, the average TM-score iden-
tified by LOMETS (21) from single-domain sequences is 0.56,
which is 115% higher than that identified by LOMETS from full-
length sequences. Furthermore, the I-TASSER force field is
optimized for folding single-domain proteins, as many energy
terms (e.g., solvation and radius-gyration constraints) are
designed for single globular domains. Thus, the individual do-
main models built by domain-based I-TASSER have a higher
average TM-score (0.64) compared with models built by whole-
chain–based I-TASSER modeling (0.50). In fact, starting from
the individual domain models, a simple domain assembly ap-
proach from AIDA and Modeller can generate full-length
structures with average TM-scores (0.46 and 0.48, respectively)
comparable to that achieved by whole-chain I-TASSER model-
ing (0.47), although the former has a higher number of steric
clashes (Table 3).

Table 2. Summary of domain structure assembly using domain
models by I-TASSER prediction on 228 proteins

Domain Method TM-score RMSD, Å iRMSD, Å No. of clashes

2dom (N = 116) DEMO 0.67 9.8 8.0 0.56
AIDA 0.55 13.4 10.8 3.69

Modeller 0.51 19.0 11.7 66.30
3dom (N = 47) DEMO 0.55 12.8 9.7 1.70

AIDA 0.43 18.9 13.0 16.80
Modeller 0.38 24.3 14.9 159.57

m4dom (N = 24) DEMO 0.47 19.0 14.2 4.47
AIDA 0.38 24.8 17.4 13.39

Modeller 0.32 31.8 22.5 382.25
2dis (N = 41) DEMO 0.58 12.4 8.9 2.36

AIDA 0.52 14.8 10.7 12.66
Modeller 0.49 19.1 11.7 55.61

All (N = 228) DEMO 0.61 11.9 9.1 1.53
AIDA 0.50 16.0 11.9 9.03

Modeller 0.46 21.5 13.5 116.86

Bold result indicates the best one. N, number of proteins.

Fig. 3. Comparison of final DEMO models and initial templates identified
by TM-align. (A) TM-scores of the first DEMO model vs. the top-rank tem-
plate. (B) RMSDs of the first DEMO model vs. the top-rank template in the
same aligned regions. (C and D) Representative examples showing im-
provement of the DEMO models over the templates. The thin lines are ex-
perimental structures, and cartoons represent initial TM-align templates or
DEMO models, with different domains signified by different colors.
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Second, DEMO exploits a procedure to identify global tem-
plates through domain-based structural alignments, which can
help detect reasonable whole-chain templates even when ho-
mologous whole-chain templates do not exist in the PDB. Fig. 5B
shows a head-to-head comparison of the whole-chain templates
identified by TM-align vs. those identified by whole-chain threading
using LOMETS, where TM-align detects templates with a higher
TM-score in 151 of the 228 cases, while LOMETS does so in only
77 cases. On average, the TM-score by TM-align is 12.9% higher
than that by LOMETS (0.473 vs. 0.419; P = 1.7E-07, Student’s
t test). This advantage of whole-chain template identification is the
major reason why DEMO can generate better domain orientations,
with an average TM-score at least 10% higher than those generated
by all other domain-assembly or whole-chain–based model pre-
diction protocols (Table 3).
Fig. 5 C and D shows 2 illustrative case examples from peridinin-

chlorophyll protein (PDB ID code 1pprM) and IFI16 receptor
(PDB ID code 3rnuB). For 1pprM (Fig. 5C), the I-TASSER–based
full-length model has only 1 domain modeled correctly due to the
lack of full-length structure templates (with average TM-scores of
0.78 and 0.29 for the N- and C-terminal domains, respectively).
After the split of the domains, I-TASSER correctly predicted in-
dividual domain structures, with an average TM-score of 0.86 for
both the N- and C-domains, where the reassembly by DEMO
resulted in a full-length model with an average TM-score of
0.91 and iRMSD of 1.9 Å.
For 3rnuB, a full-length model computed directly by I-

TASSER has both domains correctly folded (with TM-scores
of 0.84 and 0.79 for the N- and C-terminal domains, respec-
tively), probably due to I-TASSER’s ability to combine multiple
templates that can have the different templates aligned on dif-
ferent domains. However, the orientation of the domains was not
correctly predicted, resulting in a marginal TM-score of 0.55 with
an iRMSD of 5.5 Å. Under the guidance of the TM-align tem-
plates, DEMO created a first-rank model of much better overall

quality (average TM-score of 0.83 and iRMSD of 1.8 Å). These
examples highlight both aspects of advantages of individual domain
folding and the analogous template-guided domain assembly.

Multidomain Structure Assembly on CASP Targets. In this test, we
collect all of the multidomain protein targets from the most re-
cent CASP12 and CASP13 experiments. As listed in SI Appendix,
Table S1, these include 41 targets, with 20 2dom proteins, 4
3dom proteins, 4 m4dom proteins, 9 2dis proteins, 2 3dom
proteins with 1 discontinuous domain, 1 3dom protein with 2
discontinuous domains, and 1 5dom protein with 1 discontinuous
domain. As a control, we select models from 3 top servers:
Zhang-Server, QUARK (22), and Baker-Rosetta (23). While all
3 servers modeled individual domains separately, Zhang-Server
and QUARK assembled full-length models by docking domain
structures with the full-length I-TASSER models (22), and
Baker-Rosetta used linker-based domain docking guided by
contact-map prediction (10).
Table 4 compares the original models by the top server with

models reassembled by DEMO based on the domain structures
excised from the original full-length models. Here all domain
structures are randomly rotated and translated before reassem-
bly, with PDB templates released after May 1, 2016, for CASP12
and after May 1, 2018, for CASP13 excluded from the TM-align
search. It is observed that DEMO reassembly results in an ob-
vious improvement in the domain orientations, with the average
TM-score increased by 3%–4% and iRMSD (or RMSD) de-
creased by 1–2 Å compared with the original models, although
with a slight increase in the number of clashes (all <2).
SI Appendix, Fig. S4 shows an example from T0920, for which

individual domain structures were correctly predicted by all
3 servers, with average TM-scores of 0.90/0.86, 0.88/0.86, and
0.90/0.83 for the N-/C- terminal domains by Zhang-Server,
QUARK, and Baker-Rosetta, respectively, but the orientation
of the domains was incorrect, resulting in full-length models with
low TM-scores (0.61, 0.61, and 0.59, respectively). On the other
hand, starting from the server domain models, TM-align iden-
tifies a correct interdomain template structure with a TM-score
of 0.95, whereas the full-length models reassembled by DEMO
have a TM-score >0.85 and an iRMSD <3 Å in all cases (i.e.,
TM-score/iRMSD of 0.93/2.8 Å, 0.92/2.7 Å, and 0.87/2.9 Å
starting from Zhang-Server, QUARK, and Rosetta domain
models, respectively).
As a control, Table 4 also presents the model results by AIDA

and Modeller from the same domain structures, showing signif-
icantly poorer performance compared with both DEMO and the
original server models. These data demonstrate again the im-
portant impact of modeling method on the quality of multiple
domain structure assembly.

Cross-Linking and Cryo-EM Data-Assisted Domain Assembly. In ad-
dition to template-based restraints, DEMO also allows for in-
tegration of data from mass spectrometry generated cross-linking
(CL) and cryogenic electron microscopy (cryo-EM) experiments,
which are calculated as contact and density-map correlation

Table 3. Modeling on 228 2dom proteins with at least 1 domain
missed in whole-chain threading alignment

Criterion

Domain-based assembly Whole-chain folding

DEMO AIDA Modeller I-TASSER

TM-score 0.53 0.48 0.46 0.47
RMSD, Å 14.1 16.3 20.1 17.8
iRMSD, Å 9.8 11.8 11.2 12.1
No. of clashes 1.73 8.89 72.59 1.31

Bold indicates the best result in each category.

Fig. 4. Illustrative examples of domain assembly results with domain structure
predicted by I-TASSER. The thin lines represent the experimental structures, and
cartoons are the final models by DEMO (Left), AIDA (Center), and Modeller
(Right), with different colors indicating different domains. (A) 3ifrA. (B) 1sb7B.
(C) 3rimA.
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restraints, respectively (Fig. 1 and SI Appendix, Eqs. S9 and S10).
Table 5 summarizes the modeling results by the data-assisted
DEMO pipelines, DEMO-CL and DEMO-EM, compared with
the default DEMO without using experimental data. For brevity,
we focus only on the 2dom and 2dis proteins; the assembly of
proteins with 3 or more domains is a straightforward extension of
the 2-domain assembly process.
Domain assembly with CL data. The CL data are simulated from the
target structures by randomly picking up nCL restraints from all n
interdomain residue pairs that have a Cα distance <10 Å and
separation ji − jj > 5, where nCL = nðif   n≤ 5Þ, or =5ðif   5< n≤ 40Þ,
or = randð10,20ÞðotherwiseÞ. Here it is noted that n can differ
depending on the shape and size of interdomain interfaces. In fact,
7% (or 34%) of the test proteins have n= 0 (or ≤5) due to the small
interfaces. To add noise, nf ð=max½1, nCLp5%�Þ false restraints with
Cα >10 Å are selected at random and included in the CL pool.
Thus, up to 20 CL restraints are collected with at least 5% of false-
positive pairs included. Table 5 presents the results of DEMO-CL
starting with the experimentally solved domain structure, where the
CL data increase the TM-score of DEMO from 0.78 to 0.85 for
2dom proteins and from 0.84 to 0.86 for 2dis proteins; this corre-
sponds to P values of 2.7E-12 and 9.3E-09, respectively, on Stu-
dent’s t test, showing that the improvement is statistically significant.
SI Appendix, Fig. S5A presents a head-to-head TM-score compar-
ison of DEMO and DEMO-CL, showing significantly more cases
with a higher TM-score by DEMO-CL than that by DEMO. Ac-
cordingly, the average RMSD and iRMSD of DEMO-CL is re-
duced by 83.3% and 134.0%, respectively, compared with the
values of DEMO, and with fewer clashes (Table 5).
Table 5 also presents the modeling results using I-TASSER–

predicted domain models. A similar positive effect of CL re-
straints was observed in which DEMO-CL achieved an average
TM-score 4.6% higher than that of DEMO, corresponding to
P = 1.2E-06 on Student’s t test. There were 87% of cases with a
TM-score >0.5, 10.2% more compared with those of DEMO (SI
Appendix, Fig. S5B). The average RMSD and iRMSD were
20.5% and 36.4% lower, respectively, in DEMO-CL compared
with DEMO. However, the DEMO-CL models contained
slightly more clashes (1.70 vs. 1.03), probably due to the conflict
of I-TASSER model errors with the CL data.

Fig. 6A shows an illustrative example starting with the target
domains from Chain-A of the methionine synthase (PDB ID
code 4cczA), a 2dom protein, in which DEMO generates a
medium-quality model with TM-score of 0.61 and RMSD of 13.1 Å.
The inclusion of CL restraints (17 positive and 1 negative)
resulted in a significantly improved model with an average TM-
score of 0.99 and RMSD of 1.0 Å. SI Appendix, Fig. S6A shows
another example from Cys-Gly metallodipeptidase (PDB ID
code 4g1pA), a 2dis protein, which starts with the I-TASSER–

predicted domains (with TM-scores of 0.86 and 0.84 for the N-
and C-terminal domains, respectively). The DEMO model was
also drastically improved by the CL data, with increases in TM-
score from 0.74 to 0.89 and in RMSD from 6.2 Å to 3.8 Å. In
both examples, the fraction of satisfied CL pairs is low in the
original DEMO models (5.9% for 4cczA and 20% for 4g1pA)
and significantly increased in the DEMO-CL models (94.1% and
80%, respectively). In fact, the CL satisfaction rate was improved
in nearly all the test cases, with the average rate increased from
0.53/0.32 (by DEMO) to 0.84/0.65 (DEMO-CL) using the
experimental/I-TASSER domain structures. These data again
demonstrate the impact of the cross-linking data in domain
assembly experiments.
Domain assembly with cryo-EM density maps. To examine the effect of
cryo-EM data on DEMO, we simulate the density maps from the
experimental structures using the IMP program (24) with reso-
lution of 10 Å and voxel size of 2 Å. Table 5 summarizes the
models generated by integrating the cryo-EM data with DEMO,
showing that a 12.5% higher TM-score by DEMO-EM than by
DEMO (0.90 vs. 0.80) starting from the target domain structures,
which corresponds to P = 3.2E-21 on Student’s t test. When
starting from the I-TASSER–predicted domain structures, the
percentage of TM-score increase by DEMO-EM is slightly re-
duced (by 9.2%; 0.71 vs. 0.65) but still statistically significant,
with P = 2.4E-09 on Student’s t test. As shown in SI Appendix,
Fig. S5 C and D, there are a significantly greater number of
targets with a higher TM-score by DEMO-EM than by DEMO:
75% of cases when starting from the target domain and 69% of
cases when using the I-TASSER prediction domain structures.
Fig. 6B and SI Appendix, Fig. S6B show 2 examples from

calcium indicator protein (PDB ID code 3u0kA), a 2dis protein,
starting from experimental domains, and poliovirus 3CD protein
(PDB ID code 2ijd1), a 2dom protein, starting from the I-
TASSER–predicted domain model. In both cases, the original
DEMO models do not fit well with the cryo-EM density map,
where DEMO-EM with density map correlation restraints sig-
nificantly improved the model and density map matches,
resulting in a much improved global model with increases in

Table 4. Comparison of domain reassembly results and the
original models from 3 top servers on 41 multidomain targets in
CASP12 and CASP13 experiments

Server Criterion Original DEMO AIDA Modeller

Zhang-Server TM-score 0.454 0.469 0.429 0.415
RMSD, Å 20.4 18.6 22.7 23.9
iRMSD, Å 15.1 13.5 16.2 18.9

No. of clashes 1.27 1.90 9.24 3.43
QUARK TM-score 0.453 0.467 0.417 0.405

RMSD, Å 19.4 17.7 23.2 24.1
iRMSD, Å 14.3 12.9 16.1 19.2

No. of clashes 0.71 1.23 11.22 1.84
Baker-Rosetta TM-score 0.412 0.428 0.395 0.389

RMSD, Å 21.6 19.6 23.1 25.3
iRMSD, Å 17.6 15.8 17.2 18.9

No. of clashes 0.07 1.68 7.51 8.10

Bold indicates the best result in each category.

Fig. 5. Comparison of individual domain assembly and whole-chain struc-
ture prediction. (A) TM-scores of models assembled by DEMO vs. models
assembled by whole-chain I-TASSER prediction. (B) TM-scores of templates
identified by domain-based structural alignment using TM-align vs. those
identified by full-chain threading using LOMETS. (C and D) Illustrative ex-
amples from 1pprM and 3rnuB, where thin lines are native structures and
cartoons are DEMO and I-TASSER models. with different colors representing
different domains.
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average TM-score from 0.61 to 0.99 and from 0.67 to 0.89 and
decreases in RMSD from 14.9 to 0.9 Å and from 13.2 to 3.7 Å in
the 2 examples. These data clearly demonstrate the impact of the
cryo-EM data on the domain assembly process in DEMO.
Interestingly, the magnitude of TM-score improvement by the

cryo-EM data is greater than that by the CL data in both tests
(i.e., 12.5% vs. 6.3% when starting from the target domain and
9.2% vs. 4.6% when starting from the I-TASSER domain
structures). This is probably because the cryo-EM density map
provides 3D structural shape matches, which are more infor-
mative (or provide more stringent constraints on the domain
orientations) than the contact-like CL data that are essentially
1D binary constraints. Nevertheless, the effect of the CL data
also depends on the data quality. If we increase the number of
CL restraints up to L/5 (L = length of the target) with shorter
distance (<8 Å), the magnitude of TM-score increase can reach a
similar level as that obtained using cryo-EM restraints in this
experiment. If we simply implement the CL and cryo-EM re-
straints simultaneously, the model quality can be further improved
(e.g., with an increase in average TM-score to 0.96 starting from
the target domains).

Concluding Remarks
Modeling of multidomain protein structures is an important
problem that is largely ignored by mainstream computational
biology compared with the extensive effort and rapid progress
made in single-domain tertiary structure folding. This is partly
due to the difficulty in modeling interdomain orientations, as
multidomain proteins have a much higher degree of freedom in
domain orientation, and the stability of multidomain structures
often involves interactions with other protein cofactors. Mean-
while, the complex interplay of various levels of continuous and
discontinuous domain assembly and linker refinement makes the
method development difficult to automate.
In this work, we tried to meet the aforementioned challenges

and developed a pipeline, termed DEMO, to automatically as-
semble full-length protein structures with both continuous and
discontinuous domain architectures. Considering that purely
physics-based approaches have difficulty modeling domain–domain
interactions, which usually have small interfaces and often

involve interactions with other protein cofactors, the method
starts with recognition of analogous whole-chain templates by
structurally aligning the component domains with known pro-
teins from a nonredundant multidomain structure library.
Interdomain distance profiles are then extracted from the tem-
plates, which are combined with the physics-based steric potential
and used to guide the Monte Carlo domain assembly simulations.
DEMO was tested in a comprehensive set of 356 proteins

containing various levels of continuous and discontinuous do-
main structures. Starting with domain models predicted by
I-TASSER (5), which have an average TM-score of 0.77, the
structure-alignment–based search could detect correct whole-
chain templates with a TM-score >0.5 in 113 of the 228 cases.
After DEMO docking reassembly, this number was increased to
154, with the average TM-score increased from 0.52 to 0.61. Due
to the increased degrees of freedom and searching space in do-
main assembly, the model quality by DEMO generally decreases
with the number of domains involved. Meanwhile, proteins with
discontinuous domain structures are more difficult to model than
those with continuous domain structures; however, this is not the
case when using experimental domain structures, because re-
straints from interdomain linkers provide additional information
to facilitate the domain assembly simulations. Meanwhile, the
overall TM-score and iRMSD values were improved in all do-
main types when using experimentally solved high-resolution
domain structures, demonstrating the impact of domain quality
on the full-length structure models.
Overall, DEMO demonstrated significant advantages over the

state-of-the-art linker- or homology-based domain assembly
methods in terms of both global domain orientation modeling
and reduction of interdomain steric clashes. The superior per-
formance of DEMO stems mainly from the fact that the
structure-based global template identification can provide a
promising initial orientation of domains due to the inherent
correlation of local domain and global structures in natural
proteins. Second, the Monte Carlo simulations, as guided by the
composite energy function combining consensus template-based
restraints and physical terms, help refine the domain docking
structures and identify models with domain orientations closer to

Fig. 6. Illustrative examples of domain assembly by DEMO starting from the
target domain structures when assisted by experimental restraints. The thin
lines are experimental structures, and cartoons are full-length models as-
sembled by the DEMO programs, with different colors representing differ-
ent domains. (A) 4cczA assisted with CL data. (B) 3u0kA assisted with cryo-
EM data.

Table 5. Comparison of DEMO domain assembly models with or
without experimental data assistance

Domain Method TM-score RMSD, Å iRMSD, Å No. of clashes

Starting with experimentally solved domain structures
2dom

(N = 166)
DEMO 0.78 7.3 5.5 0.59

DEMO-CL 0.85 3.6 2.0 0.45
DEMO-EM 0.89 3.9 2.7 0.23

2dis
(N = 81)

DEMO 0.84 5.5 3.8 1.18
DEMO-CL 0.86 3.7 2.4 1.02
DEMO-EM 0.92 3.3 2.9 0.62

All
(N = 247)

DEMO 0.80 6.7 5.0 0.78
DEMO-CL 0.85 3.7 2.1 0.64
DEMO-EM 0.90 3.7 2.8 0.36

Starting with I-TASSER predicted domain models
2dom

(N = 116)
DEMO 0.67 9.8 8.0 0.56

DEMO-CL 0.70 8.0 5.3 1.49
DEMO-EM 0.72 7.2 6.7 0.60

2dis
(N = 41)

DEMO 0.58 12.4 8.9 2.36
DEMO-CL 0.63 10.8 8.1 2.31
DEMO-EM 0.66 10.2 8.3 2.45

All
(N = 157)

DEMO 0.65 10.5 8.2 1.03
DEMO-CL 0.68 8.7 6.0 1.70
DEMO-EM 0.71 8.0 7.1 1.08

Bold indicates the best result in each category. N, number of proteins.
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the native than the individual templates. Here we note that we
also tried to combine TM-align with the homology-based
threading alignments for whole-chain template identification,
but found that the addition from threading is modest (SI Ap-
pendix, Text S7). This result probably suggests that the structure-
based domain matches can effectively cover both analogous and
homologous interdomain orientation spaces, and thus we stick to
the DEMO pipeline, with only structural alignment for briefness
and efficiency of method implementation.
As an application, DEMO was used to assemble predicted

domains for the hard proteins that have at least 1 domain missed
in the threading alignments. Out of the 228 2dom proteins,
DEMO correctly predicted the full-length structure with a TM-
score >0.5 in 136 cases, which is 31% higher than that of the
models built directly with full-length structure modeling simu-
lations. The improvement is mainly due to the fact that domain-
based threading can identify specific tertiary templates and thus
result in better domain models. Second, the structure-based
alignments can help detect more reasonable global templates
to guide the domain assembly simulations; this is particularly
true for cases in which homologous templates do not exist but
analogous templates can be detected by domain-level structure
alignments.
As a further illustration, DEMO was applied to reassemble the

multidomain models generated by the top servers in the most
recent CASP experiments. Although these servers have built the
domain models individually, the DEMO domain reassembly
achieved considerable improvements in full-length model qual-
ity, with the average TM-score increased by 3% and iRMSD
decreased by >1 Å, which demonstrates the importance of
domain-level structure assembly.
Finally, we tested the ability of DEMO to integrating data

from CL and cryo-EM experiments. It was shown that the full-
length models assembled by DEMO when starting from experi-
mentally solved domain structures, are significantly improved by
the CL and cryo-EM restraints, with average TM-score increases
from 0.80 to 0.85 and 0.90, respectively. When starting with the
low-resolution I-TASSER–predicted domain models, the full-
length models with corrected orientation (TM-score > 0.5) are
increased by 10.2% and 12.1% with CL and cryo-EM restraints,
respectively. These results show that the DEMO domain assembly
process can benefit significantly from the sparse experimental data.
Despite the successes documented herein, DEMO could be

further improved in several aspects. Currently, domain structures
are kept rigid during the DEMO simulations, which cannot ap-
propriately account for binding-induced structural changes. In
addition, the predicted domains often have low resolution, and
thus introducing backbone flexibility to the domain assembly
simulation provides the potential for local domain structure re-
finement. Second, coevolution and deep-learning–based contact
predictions have recently demonstrated advantages in protein
3D structure prediction (25). Similarly, sequence-based inter-
domain contact and distance predictions can be introduced into
DEMO to help refine domain orientations. Work along these
lines is in progress. With continuous development, we expect
that DEMO will become an efficient tool for solving a significant
problem that despite its extreme importance has not received suf-
ficient attention by the field of computational structural biology.

Methods
DEMO involves 4 steps: global template identification, initial template su-
perposition, Monte Carlo domain assembly simulation, and atomic-level
linker reconstruction and refinement. A flowchart is displayed in Fig. 1.

Analogous Structure Template Identification. Whole-chain templates are
identified from themultidomain structure library by a 2-step procedure based
on TM-align (11) (SI Appendix, Fig. S7). In the first step, individual domains of
the query are structurally aligned with a template, regardless of the overlap

between the alignments of different domains. The average TM-score of all
domains is defined as the local score (L-score) for the template, where the
top 500 templates with highest L-scores are selected. In the second step,
domains are aligned on each of the 500 selected templates twice, once from
the N to C terminal and once from the C to N terminal, with no overlap
allowed in the alignments of different domains (SI Appendix, Fig. S7D). The
average TM-score of all domains is defined as the global score (G-score), and
alignments with the highest G-scores are selected for the next steps of initial
model construction and interdomain distance profile deduction.

Initial Model Construction. The initial conformation in DEMO is constructed
from the top templates ranked by G-score. Since the domain alignments are
performed separately, the aligned regions of 2 domains may be far away
from each other. When this happens, we use a sliding-window based pro-
cedure to recreate domain alignments so that neighboring domains have the
initial structure constructed from the neighboring regions of the template (SI
Appendix, Fig. S8). In this procedure, the N domain is superposed with every
position along the template, where at each position, the C domain is
allowed to superpose in the remaining regions of the template at a maxi-
mum of 10 residues away from the N domain. The alignment with the
highest average TM-score is finally selected to construct the initial full-
length model for the query sequence.

Replica-Exchange Monte Carlo Simulation for Domain Assembly. Starting from
the initial structure, replica-exchange Monte Carlo simulations (26) are
performed for domain assembly (SI Appendix, Section S3). The movements
contain rigid-body rotation and translation of the smaller domain, where
the larger domain is fixed during the simulation. The force field of DEMO
contains 5 energy items: (i) Cα clashes between domains, (ii) a generic
interdomain contact potential, (iii) interdomain distance restraints derived
from templates (SI Appendix, Fig. S9), (iv) domain boundary connectivity (SI
Appendix, Fig. S10), and (v) local domain distance restraint to the initial
domain-template superposition. Details of these energy items are given in SI
Appendix, Section S2.

The weighting parameters of different energy items are optimized by
maximizing the energy–RMSD correlations of decoy structure (27), based on
a separate set of 425 training proteins that are nonredundant with the test
proteins reported in this study. For a target, 5 simulation runs are per-
formed, each run with 30 replicas and each replica with 10,000 movement
iterations. The decoy conformation with the lowest energy is selected for
the next step of linker-based refinements.

Experimental Data Integration. When CL and cryo-EM data are available,
DEMO provides options for integrating such data as additional restraints to
guide the domain assembly simulations. For cross-linking data, the restraints
are implemented as a contact potential (SI Appendix, Eq. S9), with other
parts of the DEMO pipeline remaining unchanged. For cryo-EM data, DEMO
first fits the initial structure generated from the template into the density
map by performing a quick Metropolis Monte Carlo simulation with
500 steps. This fitting simulation is guided only by the density-map corre-
lation energy as defined by SI Appendix, Eq. S10, with movements including
rigid-body rotation and translation of the full-length model after matching
the centers of the structure and the global density map. Following the fit-
ting, the normal replica-exchange Monte Carlo simulations are performed to
optimize the orientation of domains with the combined cryo-EM restraints
and inherent DEMO energy force field.

Domain Connectivity and Linker Refinement. Linkers between 2 domains may
be disconnected after the domain assembly simulations. To connect the
domain structures, the residues from the domains are gradually released until
the Cα distance between the 2 unclosed residues is <3.5(l + 1) Å, where l is
the number of released residues. We note that the number of released residues
is usually low for reasonable domain assembly conformations, in which only
4.7 residues on average are required to release in our benchmark tests.

Following the linker residue release, an initial Cα linker model is con-
structed through self-avoid random walks from the anchor of the N-terminal
domain to that of the C-terminal domain, where at each walk step, a new Cα

atom must satisfy the conditions that the distance between the unclosed
termini is <3.5(l + 1) Å and no clash exists between the new atom and other
atoms. Next, Metropolis Monte Carlo simulations are performed to refine
the linker models, with movements consisting of rotations of a randomly
selected segments around the axis connecting the 2 ending atoms of the
segment. Following each movement, the backbone atoms (N, C, and O) and
side chain centers are added to the Cα traces according to the average co-
ordinates derived from the statistics of the PDB structures at a local Cartesian
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system. The energy of each decoy is evaluated by a potential containing
4 items (SI Appendix, Text S5): (i) statistical torsion-angle potential from
Ramachandran plots (6, 28), (ii) Cα clashes between the linker and domain
structures, (iii) statistical N-Cα-C bond angle potential, and (iv) orientation-
dependent side chain contact potential (SI Appendix, Fig. S11) (27). A total
of 30,000 movements are performed for each linker, with the linker model
with the lowest energy function selected. Finally, the side chain conformations
are added and refined, together with the full-chain model, by the FG-MD
program (29).

Assembly Refinement Simulations for 3 or More Domains. The DEMO simu-
lation was designed for assembling 2 neighboring domains. For proteins of
3 or more domains, full-length model is constructed by iterative imple-
mentations of the 2-domain assembly simulations, where in each iteration
the structure assembled from the last step is treated as a rigid-body virtual
N domain.

After all iterations are completed, a domain-level global refinement is
performed through a shortMetropolisMonte Carlo simulation, guided by the
energy of the sum of all pairwise domain interactions in previous iterations (SI
Appendix, Text S6). A total of 10,000 movements are performed, consisting
of small rotation and translation of individual domains, where the confor-
mation with the lowest total energy is selected. This simulation is designed
to fine-tune the arrangement of all domains to avoid possible local struc-
tural traps from the consecutive domain assembly iterations.
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