[Home] [Server] [Queue] [About] [Remove] [Statistics]

I-TASSER results for job id S692934

(Click on S692934_results.tar.bz2 to download the tarball file including all modeling results listed on this page. Click on Annotation of I-TASSER Output to read the instructions for how to interpret the results on this page. Model results are kept on the server for 60 days, there is no way to retrieve the modeling data older than 2 months)

  Submitted Sequence in FASTA format

>protein
MATVQLSTQFSCQTRVSISPNSKSISKPPFLVPVTSIIHRPMISTGGIAVSPRRVFKVRA
TDTGEIGSALLAAEEAIEDVEETERLKRSLVDSLYGTDRGLSASSETRAEIGDLITQLES
KNPTPAPTEALFLLNGKWILAYTSFVNLFPLLSRGIVPLIKVDEISQTIDSDNFTVQNSV
RFAGPLGTNSISTNAKFEIRSPKRVQIKFEQGVIGTPQLTDSIEIPEYVEVLGQKIDLNP
IRGLLTSVQDTASSVARTISSQPPLKFSLPADNAQSWLLTTYLDKDIRISRGDGGSVFVL
IKEGSPLLNP

  Predicted Secondary Structure

Sequence                  20                  40                  60                  80                 100                 120                 140                 160                 180                 200                 220                 240                 260                 280                 300
                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |          
MATVQLSTQFSCQTRVSISPNSKSISKPPFLVPVTSIIHRPMISTGGIAVSPRRVFKVRATDTGEIGSALLAAEEAIEDVEETERLKRSLVDSLYGTDRGLSASSETRAEIGDLITQLESKNPTPAPTEALFLLNGKWILAYTSFVNLFPLLSRGIVPLIKVDEISQTIDSDNFTVQNSVRFAGPLGTNSISTNAKFEIRSPKRVQIKFEQGVIGTPQLTDSIEIPEYVEVLGQKIDLNPIRGLLTSVQDTASSVARTISSQPPLKFSLPADNAQSWLLTTYLDKDIRISRGDGGSVFVLIKEGSPLLNP
PredictionCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCSSSSSCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHHHHCCCCCCCCCHHHHHHHHHHHHHHHHHCCCCCCCCCHHHCCCSSSSSSSCCCCCCCHHHCCCCCCCCCCCSSSSSSCCCCSSSSSSSSCCCCCCSSSSSSSSSSSCCCCSSSSSSSSSSSCCCCCCCCCCCCCHHHHCCCCCCCCHHHCCCHHHHHHHHHHHHCCCCCCCCCCCCCCCCCCCSSSSSSSCCCSSSSSCCCCCSSSSSSCCCCCCCC
Conf.Score9640223346535566568845465789862010555646543456667787631256521465445654455533456057999999999987344766559999999999999999974899986549556594799997257554412321567765546348999779952898999604754538999899985589659999655477033234533552011110443445501101112222000001113567874556777776607999897797689975899889998358888897
H:Helix; S:Strand; C:Coil

  Predicted Solvent Accessibility

Sequence                  20                  40                  60                  80                 100                 120                 140                 160                 180                 200                 220                 240                 260                 280                 300
                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |          
MATVQLSTQFSCQTRVSISPNSKSISKPPFLVPVTSIIHRPMISTGGIAVSPRRVFKVRATDTGEIGSALLAAEEAIEDVEETERLKRSLVDSLYGTDRGLSASSETRAEIGDLITQLESKNPTPAPTEALFLLNGKWILAYTSFVNLFPLLSRGIVPLIKVDEISQTIDSDNFTVQNSVRFAGPLGTNSISTNAKFEIRSPKRVQIKFEQGVIGTPQLTDSIEIPEYVEVLGQKIDLNPIRGLLTSVQDTASSVARTISSQPPLKFSLPADNAQSWLLTTYLDKDIRISRGDGGSVFVLIKEGSPLLNP
Prediction7322333132314233333333434334333130333233133344434344333241433444444443343564365354145004302510362632341366215303500430273323362253162030302122333443333334432311403301020317633020103032323423030303042433430302044130324423543424432422345252431333233244334423433443331514144741301010000143000011463100001036544368
Values range from 0 (buried residue) to 9 (highly exposed residue)

   Predicted normalized B-factor

(B-factor is a value to indicate the extent of the inherent thermal mobility of residues/atoms in proteins. In I-TASSER, this value is deduced from threading template proteins from the PDB in combination with the sequence profiles derived from sequence databases. The reported B-factor profile in the figure below corresponds to the normalized B-factor of the target protein, defined by B=(B'-u)/s, where B' is the raw B-factor value, u and s are respectively the mean and standard deviation of the raw B-factors along the sequence. Click here to read more about predicted normalized B-factor)


  Top 10 threading templates used by I-TASSER

(I-TASSER modeling starts from the structure templates identified by LOMETS from the PDB library. LOMETS is a meta-server threading approach containing multiple threading programs, where each threading program can generate tens of thousands of template alignments. I-TASSER only uses the templates of the highest significance in the threading alignments, the significance of which are measured by the Z-score, i.e. the difference between the raw and average scores in the unit of standard deviation. The templates in this section are the 10 best templates selected from the LOMETS threading programs. Usually, one template of the highest Z-score is selected from each threading program, where the threading programs are sorted by the average performance in the large-scale benchmark test experiments.)

Rank PDB
Hit
Iden1Iden2CovNorm.
Z-score
Download
Align.
                   20                  40                  60                  80                 100                 120                 140                 160                 180                 200                 220                 240                 260                 280                 300
                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |          
Sec.Str
Seq
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCSSSSSCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHHHHCCCCCCCCCHHHHHHHHHHHHHHHHHCCCCCCCCCHHHCCCSSSSSSSCCCCCCCHHHCCCCCCCCCCCSSSSSSCCCCSSSSSSSSCCCCCCSSSSSSSSSSSCCCCSSSSSSSSSSSCCCCCCCCCCCCCHHHHCCCCCCCCHHHCCCHHHHHHHHHHHHCCCCCCCCCCCCCCCCCCCSSSSSSSCCCSSSSSCCCCCSSSSSSCCCCCCCC
MATVQLSTQFSCQTRVSISPNSKSISKPPFLVPVTSIIHRPMISTGGIAVSPRRVFKVRATDTGEIGSALLAAEEAIEDVEETERLKRSLVDSLYGTDRGLSASSETRAEIGDLITQLESKNPTPAPTEALFLLNGKWILAYTSFVNLFPLLSRGIVPLIKVDEISQTIDSDNFTVQNSVRFAGPLGTNSISTNAKFEIRSPKRVQIKFEQGVIGTPQLTDSIEIPEYVEVLGQKIDLNPIRGLLTSVQDTASSVARTISSQPPLKFSLPADNAQSWLLTTYLDKDIRISRGDGGSVFVLIKEGSPLLNP
13jc8Q 0.10 0.24 1.00 1.33Download -SADATGIKGHHEGSGPVSGVVASQFSDQRASVGRVLLALDKASQYDVRADGNRVVISVDGTSQSVDDTLSIRADGDIARYEVLELADPPRLAVDLFGVGLATRAPRVKSGALRDVRVGAHADLSGTSGWKVDRPDPRSAVLTLDNARLPKKFERSLDTSALDTPVKMISAAGGKVRLVVAADGAIEEKVSQSALSWRLYRGKRVSFEFKDIDIQNLLRVIAEISKKNIVVADDVSGKVTIRLRNVPWDQALDLVLRTKALGKDMAARVKDVLSERGSVTVDQRTNVLIVKDVRSNTERARSLVRSLDTQ
27w7iA 0.09 0.21 0.86 1.17Download ----------------NDVATAKATGETSAKVSINKV-----LNIAEGITTPEATFTFTFTPKTGTSSNGAPYETIDSSNGQITDKNVSYSGTDVLATGQTNIKK----------------DTGDIFREVNYTHAGEYVYTVAEKQNV------GWKVIQKNGSPIDFMTYDNRNYEMHVIVKNKTTGGTYISSVYFKQVSPSVYKYDLFTNIYRKNAGKITDPNEPNPNKPSKVDPNAKFTKASTETSQSITGKIGETSKTFVYGQETTTGSQGYTASAAYKENGASKNQAGEKPNDNTITNSLPDVTP
34bmlA 0.08 0.17 0.95 1.08Download VFTAFNNASIFKGLVRSYDLRGGKSKQFMFTGKLSAGYHTPGTPIVGDAGIKANEKTLVMDDLLVSSQFVYSLDEIFSQYSTRAEVSKQIGEALATHYDERIARVLAKASAEASPVTGEPGGFHVNIGAGNTNDAQAIVDGFFEAAAVLDERSAPQEGRVAVLSPRQYYSLISSVDTNILNREIGNSQGDMNSGKGLYSIAGIRILKSNNLAGLYGQDLSSAAVTGENNDYQVDASALAGLIFHREAAGCIQSVAPTIQTTSGDFNVQYQG---------DLIVGKLAMGCGSLRTSVAGSFQAA-----
44nyqA 0.18 0.12 0.37 0.61Download ----------------------------------------------------------------------------------------------------------------------KEPCPPENLQLTPRALVGKWYLRTTSPD-----------IFKQVSNITEFYSAHGNDYYGTVTDYSPEYGLEAHVNLTVS---GRTLKFYMN-----------------------------------------------------------DTHEYDSKYEILAVDKDYFIFYGPSGLALIHYRQSCPK---
57f66S 0.08 0.19 0.98 0.91Download LSHEVISRQATINIGTIVKAISGVHTVRFKTIKLGYANAKIYKLNFKLVVMDAALLLIAGNESCPQPQTSEHLAAIEIHESQAKEQYEQILAFVQGTVAEGAPIIPLKYNIEVVCEYIVKKIPVPDFTSEPRL-----IVIRSFDVNKPGCEVDDLKGGVAGGSILKVLKVGQEIEVRPGIVSKDSEGKLMCKPIFSKIVSLFAEHNDLQYAATKIDPTLCRADRMVGQVLGAVGALPEIFTELEISYF-LLRRLLGVRTEGDKKAAKVQKLSKNEVLMVNITGDLGKIVLTNVGEKIALSRRVEVTIKP
65jxlA 0.09 0.31 0.99 0.58Download VDAGALFNANGTGLNLRDGQGIWVSYADAKFTTDRANGANVFDPNLTVAQQNNVIFWGNKDIAVTLDINLNGVRIQNDNIRSLDEAIAYINTFTAPTDTRDGTGVKAVKKADGSGIEFVNNNADGTTDNMKNIDLT---VNVGNSAGERNTINYNANTGVFSPQGGNLTTAQNDTDWIAGAAQAGQPQNVKVVTAHKYIYSSNPVTIPPMINPDGGPAFQPNNGNRPNYWDAIQGSLKNTTERTFRTTEDLRELLQRDARYGVDYNGSGIIDNATPTFDANDINQAVKVVVTENGN-FAISNANETSTIP
75fmmA 0.22 0.13 0.07 0.76Download ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------SLTVNVRGSG-MRILVRGNSPVFN-
84ufqA 0.17 0.17 0.67 0.50Download -ATTTFDGPVAAERFSADTTLEAAFLKTTSETNHAATIYQAGTSGDGAALN--------VISDNPGTSAYLSGTETAR-----------------GT---LKITHR---------------GYADGSDKDAAALS---------------------LDLRVAGTAAQGIATNGPTKGNLIALRNNTG------LDDFVVKGTGRIGVGIDRA--ATPR--------AQVHIVQRG---DALAALL---------VEGSVRIGNAATVPTSVDSSGG---ALYASGGALLWRGSNGTVTTIAPA-------
93j65R 0.06 0.19 0.91 0.98Download -------NADRTRIERQELAKKKREEQIKKKRSNKNKFVRAESIVAKTLATSREKERIKRVSILEDKKAKNETQHIASGKDFILKITEKANGAEENSVDLEETEEEED----------DGLIREKTTYDGKPALLFIVRVRGPLAVNIPNKAFKILSLLRLVETNTGVFVKLTKNVYPLLKVIAPYVVIGK-----PSLSSIRSLIQKRGRIIYKGENEAEPHEIVLNDNNIVEEQLGDHGIICVEDIIHEIATMGESFSVCNLNRLRKIKQREAESRTRQFSNAATAPVIEVDIDSLLAKLN-------
103snoA 0.17 0.12 0.15 0.99Download -------------------------------------------------------------------------------------------------------SS---DKLAQREHGVS--------------------------------------------------------------------------------------------------------------------------------------------------------VTSSRFDDVIFTDGD-RVLEGATSTVVSFK--G-DKIRT
(a)All the residues are colored in black; however, those residues in template which are identical to the residue in the query sequence are highlighted in color. Coloring scheme is based on the property of amino acids, where polar are brightly coloured while non-polar residues are colored in dark shade. (more about the colors used)
(b)Rank of templates represents the top ten threading templates used by I-TASSER.
(c)Ident1 is the percentage sequence identity of the templates in the threading aligned region with the query sequence.
(d)Ident2 is the percentage sequence identity of the whole template chains with query sequence.
(e)Cov represents the coverage of the threading alignment and is equal to the number of aligned residues divided by the length of query protein.
(f)Norm. Z-score is the normalized Z-score of the threading alignments. Alignment with a Normalized Z-score >1 mean a good alignment and vice versa.
(g)Download Align. provides the 3D structure of the aligned regions of the threading templates.
(h)The top 10 alignments reported above (in order of their ranking) are from the following threading programs:
       1: Neff-PPAS   2: PROSPECT2   3: Neff-PPAS   4: FFAS-3D   5: SPARKS-X   6: SP3   7: HHSEARCH   8: wdPPAS   9: Neff-PPAS   10: HHSEARCH2   

   Top 5 final models predicted by I-TASSER

(For each target, I-TASSER simulations generate a large ensemble of structural conformations, called decoys. To select the final models, I-TASSER uses the SPICKER program to cluster all the decoys based on the pair-wise structure similarity, and reports up to five models which corresponds to the five largest structure clusters. The confidence of each model is quantitatively measured by C-score that is calculated based on the significance of threading template alignments and the convergence parameters of the structure assembly simulations. C-score is typically in the range of [-5, 2], where a C-score of a higher value signifies a model with a higher confidence and vice-versa. TM-score and RMSD are estimated based on C-score and protein length following the correlation observed between these qualities. Since the top 5 models are ranked by the cluster size, it is possible that the lower-rank models have a higher C-score in rare cases. Although the first model has a better quality in most cases, it is also possible that the lower-rank models have a better quality than the higher-rank models as seen in our benchmark tests. If the I-TASSER simulations converge, it is possible to have less than 5 clusters generated; this is usually an indication that the models have a good quality because of the converged simulations.)
    (By right-click on the images, you can export image file or change the configurations, e.g. modifying the background color or stopping the spin of your models)
  • Download Model 1
  • C-score=-3.63 (Read more about C-score)
  • Estimated TM-score = 0.32±0.10
  • Estimated RMSD = 15.2±3.5Å

  • Download Model 2
  • C-score = -3.15

  • Download Model 3
  • C-score = -2.74

  • Download Model 4
  • C-score = -3.86

  • Download Model 5
  • C-score = -4.30


  Proteins structurally close to the target in the PDB (as identified by TM-align)

(After the structure assembly simulation, I-TASSER uses the TM-align structural alignment program to match the first I-TASSER model to all structures in the PDB library. This section reports the top 10 proteins from the PDB that have the closest structural similarity, i.e. the highest TM-score, to the predicted I-TASSER model. Due to the structural similarity, these proteins often have similar function to the target. However, users are encouraged to use the data in the next section 'Predicted function using COACH' to infer the function of the target protein, since COACH has been extensively trained to derive biological functions from multi-source of sequence and structure features which has on average a higher accuracy than the function annotations derived only from the global structure comparison.)


Top 10 Identified stuctural analogs in PDB

Click
to view
RankPDB HitTM-scoreRMSDaIDENaCovAlignment
17f66S0.855 2.970.0720.981Download
22plfA0.781 3.480.1110.958Download
32dcuA0.778 3.480.1050.948Download
41s0uA0.765 3.400.0930.923Download
51eftA0.677 4.070.0870.871Download
63j81k0.674 3.720.0670.842Download
74zkdA0.662 4.290.0680.874Download
85lzwjj0.657 3.760.0930.816Download
93agjA0.657 3.970.0770.836Download
105m1jA60.656 3.910.0670.836Download

(a)Query structure is shown in cartoon, while the structural analog is displayed using backbone trace.
(b)Ranking of proteins is based on TM-score of the structural alignment between the query structure and known structures in the PDB library.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of the alignment by TM-align and is equal to the number of structurally aligned residues divided by length of the query protein.


  Predicted function using COFACTOR and COACH

(This section reports biological annotations of the target protein by COFACTOR and COACH based on the I-TASSER structure prediction. While COFACTOR deduces protein functions (ligand-binding sites, EC and GO) using structure comparison and protein-protein networks, COACH is a meta-server approach that combines multiple function annotation results (on ligand-binding sites) from the COFACTOR, TM-SITE and S-SITE programs.)

  Ligand binding sites


Click
to view
RankC-scoreCluster
size
PDB
Hit
Lig
Name
Download
Complex
Ligand Binding Site Residues
10.12 4 3sjzA GNP Rep, Mult 145,146,148,157,201,203,205
20.09 3 1x92B M7P Rep, Mult 119,122
30.06 2 3izwC Nuc.Acid Rep, Mult 28,144,145,146,160,201,202,203,206,215,222,271,274,276,278,291,302,304,308
40.03 1 1bjyA CTC Rep, Mult 114,118
50.03 1 1w77A CU Rep, Mult 107,113


Download the residue-specific ligand binding probability, which is estimated by SVM.
Download the all possible binding ligands and detailed prediction summary.
Download the templates clustering results.
(a)C-score is the confidence score of the prediction. C-score ranges [0-1], where a higher score indicates a more reliable prediction.
(b)Cluster size is the total number of templates in a cluster.
(c)Lig Name is name of possible binding ligand. Click the name to view its information in the BioLiP database.
(d)Rep is a single complex structure with the most representative ligand in the cluster, i.e., the one listed in the Lig Name column.
Mult is the complex structures with all potential binding ligands in the cluster.

  Enzyme Commission (EC) numbers and active sites


Click
to view
RankCscoreECPDB
Hit
TM-scoreRMSDaIDENaCovEC NumberActive Site Residues
10.1161ha3B0.651 3.970.0840.832 3.1.5.1  284
20.0881b23P0.671 4.070.0940.865 3.6.5.3  NA
30.0872elfA0.627 3.760.0640.793 3.6.1.48  NA
40.0861f60A0.575 4.740.0970.816 3.6.5.3  NA
50.0792e1rA0.555 5.230.0790.793 3.6.5.3  NA

 Click on the radio buttons to visualize predicted active site residues.
(a)CscoreEC is the confidence score for the EC number prediction. CscoreEC values range in between [0-1];
where a higher score indicates a more reliable EC number prediction.
(b)TM-score is a measure of global structural similarity between query and template protein.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of global structural alignment and is equal to the number of structurally aligned residues divided
by length of the query protein.

  Gene Ontology (GO) terms
Top 10 homologous GO templates in PDB 
RankCscoreGOTM-scoreRMSDaIDENaCovPDB HitAssociated GO Terms
1 0.110.7808 3.48 0.11 0.962plfA GO:0000166 GO:0006412 GO:0003743 GO:0005525 GO:0003924 GO:0006184 GO:0006413
2 0.100.7785 3.48 0.10 0.952dcuA GO:0000166 GO:0003743 GO:0005525 GO:0006413 GO:0006184 GO:0006412 GO:0003924
3 0.100.7646 3.40 0.09 0.921s0uA GO:0000166 GO:0006412 GO:0003743 GO:0005525 GO:0006413 GO:0006184 GO:0003924
4 0.090.6566 3.97 0.08 0.843agjA GO:0006184 GO:0005737 GO:0003746 GO:0005525 GO:0003924 GO:0000166 GO:0006412 GO:0006414
5 0.090.6709 4.07 0.09 0.861b23P GO:0005525 GO:0005737 GO:0006414 GO:0006184 GO:0003746 GO:0005622 GO:0000166 GO:0006412 GO:0003924
6 0.090.6463 4.00 0.06 0.843p27B GO:0000166 GO:0006184 GO:0006417 GO:0006414 GO:0006412 GO:0005525 GO:0003924 GO:0003746 GO:0005737 GO:0005515 GO:0016150 GO:0070651 GO:0032790
7 0.090.6392 4.16 0.09 0.841wb1C GO:0000166 GO:0005525 GO:0006184 GO:0001514 GO:0003723 GO:0003746 GO:0003924 GO:0005737
8 0.080.6274 4.43 0.07 0.833izqA GO:0006414 GO:0006417 GO:0006412 GO:0005525 GO:0003924 GO:0003746 GO:0000166 GO:0005737 GO:0016150 GO:0070651 GO:0005515 GO:0032790 GO:0006184
9 0.080.6202 3.76 0.07 0.782elfA GO:0006414 GO:0003746
10 0.080.5749 4.74 0.10 0.821f60A GO:0006412 GO:0003924 GO:0003746 GO:0005840 GO:0003779 GO:0006409 GO:0005515 GO:0005525 GO:0006414 GO:0019003 GO:0005737 GO:0006184 GO:0005856 GO:0000166


Consensus prediction of GO terms
 
Molecular Function GO:0008135 GO:0003924 GO:0005525
GO-Score 0.55 0.40 0.40
Biological Process GO:0006184 GO:0006412
GO-Score 0.40 0.40
Cellular Component GO:0044424
GO-Score 0.34

(a)CscoreGO is a combined measure for evaluating global and local similarity between query and template protein. It's range is [0-1] and higher values indicate more confident predictions.
(b)TM-score is a measure of global structural similarity between query and template protein.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of global structural alignment and is equal to the number of structurally aligned residues divided by length of the query protein.
(f)The second table shows a consensus GO terms amongst the top scoring templates. The GO-Score associated with each prediction is defined as the average weight of the GO term, where the weights are assigned based on CscoreGO of the template.


[Click on S692934_results.tar.bz2 to download the tarball file including all modeling results listed on this page]



Please cite the following articles when you use the I-TASSER server:
  • Wei Zheng, Chengxin Zhang, Yang Li, Robin Pearce, Eric W. Bell, Yang Zhang. Folding non-homology proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Reports Methods, 1: 100014 (2021).
  • Chengxin Zhang, Peter L. Freddolino, and Yang Zhang. COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Research, 45: W291-299 (2017).
  • Jianyi Yang, Yang Zhang. I-TASSER server: new development for protein structure and function predictions, Nucleic Acids Research, 43: W174-W181, 2015.