Home Research COVID-19 Services Publications People Teaching Job Opening News Forum
Online Services

I-TASSER I-TASSER-MTD C-I-TASSER CR-I-TASSER QUARK C-QUARK LOMETS MUSTER CEthreader SEGMER DeepFold DeepFoldRNA FoldDesign COFACTOR COACH MetaGO TripletGO IonCom FG-MD ModRefiner REMO DEMO DEMO-EM SPRING COTH Threpp PEPPI BSpred ANGLOR EDock BSP-SLIM SAXSTER FUpred ThreaDom ThreaDomEx EvoDesign BindProf BindProfX SSIPe GPCR-I-TASSER MAGELLAN ResQ STRUM DAMpred

TM-score TM-align US-align MM-align RNA-align NW-align LS-align EDTSurf MVP MVP-Fit SPICKER HAAD PSSpred 3DRobot MR-REX I-TASSER-MR SVMSEQ NeBcon ResPRE TripletRes DeepPotential WDL-RF ATPbind DockRMSD DeepMSA FASPR EM-Refiner GPU-I-TASSER

BioLiP E. coli GLASS GPCR-HGmod GPCR-RD GPCR-EXP Tara-3D TM-fold DECOYS POTENTIAL RW/RWplus EvoEF HPSF THE-DB ADDRESS Alpaca-Antibody CASP7 CASP8 CASP9 CASP10 CASP11 CASP12 CASP13 CASP14


IonCom is a ligand-specific method for small ligand (including metal and acid radical ions) binding site prediction. Starting from given sequences or structures of the query proteins, IonCom performs a composite binding-site prediction that combines ab initio training and template-based transferals. To enhance specificity and sensitivity, the server focuses on binding site prediction of thirteen most important small ligand molecules, including nine metal ions (Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+) and four acid radical ions (CO32-, NO2-, SO42-, PO43-).


[View an example of output] [Download standalone IonCom program ] [Download dataset used to train/test IonCom ]

Input data

    Please copy and paste your data below (either structure in PDB format or sequence in FASTA format is acceptable)


    Or upload the stucture/sequence file:

Select ligand type

    I don't know the ligand types

    I know the ligand types

    • Zn2+
    • Cu2+
    • Fe2+
    • Fe3+
    • Ca2+
    • Mg2+
    • Mn2+
    • Na+
    • K+
    • CO32-
    • NO2-
    • SO42-
    • PO43-

Your email Address


IonCom Resource:

Reference
  • Xiuzhen Hu, Qiwen Dong, Jianyi Yang, Yang Zhang. Recognizing metal and acid radical ion binding sites by integrating ab initio modeling with template-based transferals. Bioinformatics 32, no. 21 (2016): 3260-3269. [PDF]

yangzhanglabumich.edu | (734) 647-1549 | 100 Washtenaw Avenue, Ann Arbor, MI 48109-2218