/* MM-align: complex structure alignment by TM-score superposition. * Please report issues to zhanglab@zhanggroup.org * * References to cite: * Srayanta Mukherjee, Yang Zhang. Nucleic Acids Research 2009; 37:e83 * * DISCLAIMER: * Permission to use, copy, modify, and distribute this program for any * purpose, with or without fee, is hereby granted, provided that the * notices on the head, the reference information, and this copyright * notice appear in all copies or substantial portions of the Software. * It is provided "as is" without express or implied warranty. * * ========================= * How to install the program * ========================= * The following command compiles the program in your Linux computer: * * g++ -static -O3 -ffast-math -lm -o MMalign MMalign.cpp * * The '-static' flag should be removed on Mac OS, which does not support * building static executables. * * MMalign.cpp does not natively compile on Windows OS due to its lack of * POSIX support. Nonetheless, MMalign.cpp is fully tested and known to * work on Windows Subsystem for Linux (WSL2) for Windows 10 onwards. * * =================== * How to use MM-align * =================== * You can run the program without argument to obtain the document. * Briefly, you can compare two structures by: * * ./MMalign structure1.pdb structure2.pdb * * ============== * update history * ============== * 2019/04/08: A C/C++ code of MM-align was constructed by Chengxin Zhang * 2019/09/09: Fix bug in output display where unalign chains were missing. * 2019/10/06: Fix bug in homo-oligomer alignment. * 2019/10/07: Combine all codes into a single cpp file. A code block from * pstream.h (by Jonathan Wakely) is included for compressed * file reading. This code block and its original license notice * are marked in this file. * 2019/10/13: Refine chain assignment for dimer alignment. * 2019/10/16: Add new option to read multi-model structure file * 2019/10/21: Show model index in output for -ter 0. * Add -mirror option for aligning mirrored structures. * 2021/08/16: Rewrite dynamic programming for non-cross-chain alignment. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; void print_version() { cout << "\n" " **********************************************************************\n" " * MM-align (Version 20210816): complex structure alignment *\n" " * References: S Mukherjee, Y Zhang. Nucl Acids Res 37(11):e83 (2009) *\n" " * Please email comments and suggestions to zhanglab@zhanggroup.org *\n" " **********************************************************************" << endl; } void print_extra_help() { cout << "Additional options:\n" " -fast Fast but slightly inaccurate alignment\n" "\n" " -dir1 Use a list of PDB chains listed by 'chain1_list' under\n" " 'chain1_folder' as all chains for the first complex.\n" " Note that the slash is necessary.\n" " $ MMalign -dir1 chain1_folder/ chain1_list complex2\n" "\n" " -dir2 Use a list of PDB chains listed by'chain2_list'\n" " under 'chain2_folder' as all chains for the second complex.\n" " $ MMalign complex1 -dir2 chain2_folder/ chain2_list\n" "\n" " -suffix (Only when -dir1 and/or -dir2 are set, default is empty)\n" " add file name suffix to files listed by chain1_list or chain2_list\n" "\n" " -atom 4-character atom name used to represent a residue.\n" " Default is \" C3'\" for RNA/DNA and \" CA \" for proteins\n" " (note the spaces before and after CA).\n" "\n" " -mol Types of molecules to align\n""Molecule type: RNA or protein\n" " auto : (default) align both proteins and nucleic acids\n" " protein: only align proteins\n" " RNA : only align nucleic acids (RNA and DNA)\n" "\n" " -split Whether to split PDB file into multiple chains\n" " 2: (default) treat each chain as a seperate chain (-ter should be <=1)\n" " 1: treat each MODEL as a separate chain (-ter should be 0)\n" " and joins all chains in a MODEL into a single chain.\n" "\n" " -outfmt Output format\n" " 0: (default) full output\n" " 1: fasta format compact output\n" " 2: tabular format very compact output\n" " -1: full output, but without version or citation information\n" "\n" " -TMcut -1: (default) do not consider TMcut\n" " Values in [0.5,1): Do not proceed with TM-align for this\n" " structure pair if TM-score is unlikely to reach TMcut.\n" " TMcut is normalized is set by -a option:\n" " -2: normalized by longer structure length\n" " -1: normalized by shorter structure length\n" " 0: (default, same as F) normalized by second structure\n" " 1: same as T, normalized by average structure length\n" "\n" " -mirror Whether to align the mirror image of input structure\n" " 0: (default) do not align mirrored structure\n" " 1: align mirror of chain1 to origin chain2\n" "\n" " -het Whether to align residues marked as 'HETATM' in addition to 'ATOM '\n" " 0: (default) only align 'ATOM ' residues\n" " 1: align both 'ATOM ' and 'HETATM' residues\n" "\n" " -infmt1 Input format for complex1\n" " -infmt2 Input format for complex2\n" " -1: (default) automatically detect PDB or PDBx/mmCIF format\n" " 0: PDB format\n" " 1: SPICKER format\n" " 2: xyz format\n" " 3: PDBx/mmCIF format\n" < #include #include #include #include #include #include // for min() #include // for errno #include // for size_t, NULL #include // for exit() #include // for pid_t #include // for waitpid() #include // for ioctl() and FIONREAD #if defined(__sun) # include // for FIONREAD on Solaris 2.5 #endif #include // for pipe() fork() exec() and filedes functions #include // for kill() #include // for fcntl() #if REDI_EVISCERATE_PSTREAMS # include // for FILE, fdopen() #endif /// The library version. #define PSTREAMS_VERSION 0x0101 // 1.0.1 /** * @namespace redi * @brief All PStreams classes are declared in namespace redi. * * Like the standard iostreams, PStreams is a set of class templates, * taking a character type and traits type. As with the standard streams * they are most likely to be used with @c char and the default * traits type, so typedefs for this most common case are provided. * * The @c pstream_common class template is not intended to be used directly, * it is used internally to provide the common functionality for the * other stream classes. */ namespace redi { /// Common base class providing constants and typenames. struct pstreams { /// Type used to specify how to connect to the process. typedef std::ios_base::openmode pmode; /// Type used to hold the arguments for a command. typedef std::vector argv_type; /// Type used for file descriptors. typedef int fd_type; static const pmode pstdin = std::ios_base::out; ///< Write to stdin static const pmode pstdout = std::ios_base::in; ///< Read from stdout static const pmode pstderr = std::ios_base::app; ///< Read from stderr /// Create a new process group for the child process. static const pmode newpg = std::ios_base::trunc; protected: enum { bufsz = 32 }; ///< Size of pstreambuf buffers. enum { pbsz = 2 }; ///< Number of putback characters kept. }; /// Class template for stream buffer. template > class basic_pstreambuf : public std::basic_streambuf , public pstreams { public: // Type definitions for dependent types typedef CharT char_type; typedef Traits traits_type; typedef typename traits_type::int_type int_type; typedef typename traits_type::off_type off_type; typedef typename traits_type::pos_type pos_type; /** @deprecated use pstreams::fd_type instead. */ typedef fd_type fd_t; /// Default constructor. basic_pstreambuf(); /// Constructor that initialises the buffer with @a cmd. basic_pstreambuf(const std::string& cmd, pmode mode); /// Constructor that initialises the buffer with @a file and @a argv. basic_pstreambuf( const std::string& file, const argv_type& argv, pmode mode ); /// Destructor. ~basic_pstreambuf(); /// Initialise the stream buffer with @a cmd. basic_pstreambuf* open(const std::string& cmd, pmode mode); /// Initialise the stream buffer with @a file and @a argv. basic_pstreambuf* open(const std::string& file, const argv_type& argv, pmode mode); /// Close the stream buffer and wait for the process to exit. basic_pstreambuf* close(); /// Send a signal to the process. basic_pstreambuf* kill(int signal = SIGTERM); /// Send a signal to the process' process group. basic_pstreambuf* killpg(int signal = SIGTERM); /// Close the pipe connected to the process' stdin. void peof(); /// Change active input source. bool read_err(bool readerr = true); /// Report whether the stream buffer has been initialised. bool is_open() const; /// Report whether the process has exited. bool exited(); #if REDI_EVISCERATE_PSTREAMS /// Obtain FILE pointers for each of the process' standard streams. std::size_t fopen(FILE*& in, FILE*& out, FILE*& err); #endif /// Return the exit status of the process. int status() const; /// Return the error number (errno) for the most recent failed operation. int error() const; protected: /// Transfer characters to the pipe when character buffer overflows. int_type overflow(int_type c); /// Transfer characters from the pipe when the character buffer is empty. int_type underflow(); /// Make a character available to be returned by the next extraction. int_type pbackfail(int_type c = traits_type::eof()); /// Write any buffered characters to the stream. int sync(); /// Insert multiple characters into the pipe. std::streamsize xsputn(const char_type* s, std::streamsize n); /// Insert a sequence of characters into the pipe. std::streamsize write(const char_type* s, std::streamsize n); /// Extract a sequence of characters from the pipe. std::streamsize read(char_type* s, std::streamsize n); /// Report how many characters can be read from active input without blocking. std::streamsize showmanyc(); protected: /// Enumerated type to indicate whether stdout or stderr is to be read. enum buf_read_src { rsrc_out = 0, rsrc_err = 1 }; /// Initialise pipes and fork process. pid_t fork(pmode mode); /// Wait for the child process to exit. int wait(bool nohang = false); /// Return the file descriptor for the output pipe. fd_type& wpipe(); /// Return the file descriptor for the active input pipe. fd_type& rpipe(); /// Return the file descriptor for the specified input pipe. fd_type& rpipe(buf_read_src which); void create_buffers(pmode mode); void destroy_buffers(pmode mode); /// Writes buffered characters to the process' stdin pipe. bool empty_buffer(); bool fill_buffer(bool non_blocking = false); /// Return the active input buffer. char_type* rbuffer(); buf_read_src switch_read_buffer(buf_read_src); private: basic_pstreambuf(const basic_pstreambuf&); basic_pstreambuf& operator=(const basic_pstreambuf&); void init_rbuffers(); pid_t ppid_; // pid of process fd_type wpipe_; // pipe used to write to process' stdin fd_type rpipe_[2]; // two pipes to read from, stdout and stderr char_type* wbuffer_; char_type* rbuffer_[2]; char_type* rbufstate_[3]; /// Index into rpipe_[] to indicate active source for read operations. buf_read_src rsrc_; int status_; // hold exit status of child process int error_; // hold errno if fork() or exec() fails }; /// Class template for common base class. template > class pstream_common : virtual public std::basic_ios , virtual public pstreams { protected: typedef basic_pstreambuf streambuf_type; typedef pstreams::pmode pmode; typedef pstreams::argv_type argv_type; /// Default constructor. pstream_common(); /// Constructor that initialises the stream by starting a process. pstream_common(const std::string& cmd, pmode mode); /// Constructor that initialises the stream by starting a process. pstream_common(const std::string& file, const argv_type& argv, pmode mode); /// Pure virtual destructor. virtual ~pstream_common() = 0; /// Start a process. void do_open(const std::string& cmd, pmode mode); /// Start a process. void do_open(const std::string& file, const argv_type& argv, pmode mode); public: /// Close the pipe. void close(); /// Report whether the stream's buffer has been initialised. bool is_open() const; /// Return the command used to initialise the stream. const std::string& command() const; /// Return a pointer to the stream buffer. streambuf_type* rdbuf() const; #if REDI_EVISCERATE_PSTREAMS /// Obtain FILE pointers for each of the process' standard streams. std::size_t fopen(FILE*& in, FILE*& out, FILE*& err); #endif protected: std::string command_; ///< The command used to start the process. streambuf_type buf_; ///< The stream buffer. }; /** * @class basic_ipstream * @brief Class template for Input PStreams. * * Reading from an ipstream reads the command's standard output and/or * standard error (depending on how the ipstream is opened) * and the command's standard input is the same as that of the process * that created the object, unless altered by the command itself. */ template > class basic_ipstream : public std::basic_istream , public pstream_common , virtual public pstreams { typedef std::basic_istream istream_type; typedef pstream_common pbase_type; using pbase_type::buf_; // declare name in this scope // Ensure a basic_ipstream will read from at least one pipe pmode readable(pmode mode) { if (!(mode & (pstdout|pstderr))) mode |= pstdout; return mode; } public: /// Type used to specify how to connect to the process. typedef typename pbase_type::pmode pmode; /// Type used to hold the arguments for a command. typedef typename pbase_type::argv_type argv_type; /// Default constructor, creates an uninitialised stream. basic_ipstream() : istream_type(NULL), pbase_type() { } /** * @brief Constructor that initialises the stream by starting a process. * * Initialises the stream buffer by calling do_open() with the supplied * arguments. * * @param cmd a string containing a shell command. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, pmode) */ explicit basic_ipstream(const std::string& cmd, pmode mode = pstdout) : istream_type(NULL), pbase_type(cmd, readable(mode)) { } /** * @brief Constructor that initialises the stream by starting a process. * * Initialises the stream buffer by calling do_open() with the supplied * arguments. * * @param file a string containing the pathname of a program to execute. * @param argv a vector of argument strings passed to the new program. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, const argv_type&, pmode) */ basic_ipstream( const std::string& file, const argv_type& argv, pmode mode = pstdout ) : istream_type(NULL), pbase_type(file, argv, readable(mode)) { } /** * @brief Constructor that initialises the stream by starting a process. * * Initialises the stream buffer by calling * @c do_open(argv[0],argv,mode|pstdout) * * @param argv a vector of argument strings passed to the new program. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, const argv_type&, pmode) */ explicit basic_ipstream(const argv_type& argv, pmode mode = pstdout) : istream_type(NULL), pbase_type(argv.at(0), argv, readable(mode)) { } #if __cplusplus >= 201103L template explicit basic_ipstream(std::initializer_list args, pmode mode = pstdout) : basic_ipstream(argv_type(args.begin(), args.end()), mode) { } #endif /** * @brief Destructor. * * Closes the stream and waits for the child to exit. */ ~basic_ipstream() { } /** * @brief Start a process. * * Calls do_open( @a cmd , @a mode|pstdout ). * * @param cmd a string containing a shell command. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, pmode) */ void open(const std::string& cmd, pmode mode = pstdout) { this->do_open(cmd, readable(mode)); } /** * @brief Start a process. * * Calls do_open( @a file , @a argv , @a mode|pstdout ). * * @param file a string containing the pathname of a program to execute. * @param argv a vector of argument strings passed to the new program. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, const argv_type&, pmode) */ void open( const std::string& file, const argv_type& argv, pmode mode = pstdout ) { this->do_open(file, argv, readable(mode)); } /** * @brief Set streambuf to read from process' @c stdout. * @return @c *this */ basic_ipstream& out() { this->buf_.read_err(false); return *this; } /** * @brief Set streambuf to read from process' @c stderr. * @return @c *this */ basic_ipstream& err() { this->buf_.read_err(true); return *this; } }; /** * @class basic_opstream * @brief Class template for Output PStreams. * * Writing to an open opstream writes to the standard input of the command; * the command's standard output is the same as that of the process that * created the pstream object, unless altered by the command itself. */ template > class basic_opstream : public std::basic_ostream , public pstream_common , virtual public pstreams { typedef std::basic_ostream ostream_type; typedef pstream_common pbase_type; using pbase_type::buf_; // declare name in this scope public: /// Type used to specify how to connect to the process. typedef typename pbase_type::pmode pmode; /// Type used to hold the arguments for a command. typedef typename pbase_type::argv_type argv_type; /// Default constructor, creates an uninitialised stream. basic_opstream() : ostream_type(NULL), pbase_type() { } /** * @brief Constructor that initialises the stream by starting a process. * * Initialises the stream buffer by calling do_open() with the supplied * arguments. * * @param cmd a string containing a shell command. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, pmode) */ explicit basic_opstream(const std::string& cmd, pmode mode = pstdin) : ostream_type(NULL), pbase_type(cmd, mode|pstdin) { } /** * @brief Constructor that initialises the stream by starting a process. * * Initialises the stream buffer by calling do_open() with the supplied * arguments. * * @param file a string containing the pathname of a program to execute. * @param argv a vector of argument strings passed to the new program. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, const argv_type&, pmode) */ basic_opstream( const std::string& file, const argv_type& argv, pmode mode = pstdin ) : ostream_type(NULL), pbase_type(file, argv, mode|pstdin) { } /** * @brief Constructor that initialises the stream by starting a process. * * Initialises the stream buffer by calling * @c do_open(argv[0],argv,mode|pstdin) * * @param argv a vector of argument strings passed to the new program. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, const argv_type&, pmode) */ explicit basic_opstream(const argv_type& argv, pmode mode = pstdin) : ostream_type(NULL), pbase_type(argv.at(0), argv, mode|pstdin) { } #if __cplusplus >= 201103L /** * @brief Constructor that initialises the stream by starting a process. * * @param args a list of argument strings passed to the new program. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, const argv_type&, pmode) */ template explicit basic_opstream(std::initializer_list args, pmode mode = pstdin) : basic_opstream(argv_type(args.begin(), args.end()), mode) { } #endif /** * @brief Destructor * * Closes the stream and waits for the child to exit. */ ~basic_opstream() { } /** * @brief Start a process. * * Calls do_open( @a cmd , @a mode|pstdin ). * * @param cmd a string containing a shell command. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, pmode) */ void open(const std::string& cmd, pmode mode = pstdin) { this->do_open(cmd, mode|pstdin); } /** * @brief Start a process. * * Calls do_open( @a file , @a argv , @a mode|pstdin ). * * @param file a string containing the pathname of a program to execute. * @param argv a vector of argument strings passed to the new program. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, const argv_type&, pmode) */ void open( const std::string& file, const argv_type& argv, pmode mode = pstdin) { this->do_open(file, argv, mode|pstdin); } }; /** * @class basic_pstream * @brief Class template for Bidirectional PStreams. * * Writing to a pstream opened with @c pmode @c pstdin writes to the * standard input of the command. * Reading from a pstream opened with @c pmode @c pstdout and/or @c pstderr * reads the command's standard output and/or standard error. * Any of the process' @c stdin, @c stdout or @c stderr that is not * connected to the pstream (as specified by the @c pmode) * will be the same as the process that created the pstream object, * unless altered by the command itself. */ template > class basic_pstream : public std::basic_iostream , public pstream_common , virtual public pstreams { typedef std::basic_iostream iostream_type; typedef pstream_common pbase_type; using pbase_type::buf_; // declare name in this scope public: /// Type used to specify how to connect to the process. typedef typename pbase_type::pmode pmode; /// Type used to hold the arguments for a command. typedef typename pbase_type::argv_type argv_type; /// Default constructor, creates an uninitialised stream. basic_pstream() : iostream_type(NULL), pbase_type() { } /** * @brief Constructor that initialises the stream by starting a process. * * Initialises the stream buffer by calling do_open() with the supplied * arguments. * * @param cmd a string containing a shell command. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, pmode) */ explicit basic_pstream(const std::string& cmd, pmode mode = pstdout|pstdin) : iostream_type(NULL), pbase_type(cmd, mode) { } /** * @brief Constructor that initialises the stream by starting a process. * * Initialises the stream buffer by calling do_open() with the supplied * arguments. * * @param file a string containing the pathname of a program to execute. * @param argv a vector of argument strings passed to the new program. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, const argv_type&, pmode) */ basic_pstream( const std::string& file, const argv_type& argv, pmode mode = pstdout|pstdin ) : iostream_type(NULL), pbase_type(file, argv, mode) { } /** * @brief Constructor that initialises the stream by starting a process. * * Initialises the stream buffer by calling * @c do_open(argv[0],argv,mode) * * @param argv a vector of argument strings passed to the new program. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, const argv_type&, pmode) */ explicit basic_pstream(const argv_type& argv, pmode mode = pstdout|pstdin) : iostream_type(NULL), pbase_type(argv.at(0), argv, mode) { } #if __cplusplus >= 201103L /** * @brief Constructor that initialises the stream by starting a process. * * @param l a list of argument strings passed to the new program. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, const argv_type&, pmode) */ template explicit basic_pstream(std::initializer_list l, pmode mode = pstdout|pstdin) : basic_pstream(argv_type(l.begin(), l.end()), mode) { } #endif /** * @brief Destructor * * Closes the stream and waits for the child to exit. */ ~basic_pstream() { } /** * @brief Start a process. * * Calls do_open( @a cnd , @a mode ). * * @param cmd a string containing a shell command. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, pmode) */ void open(const std::string& cmd, pmode mode = pstdout|pstdin) { this->do_open(cmd, mode); } /** * @brief Start a process. * * Calls do_open( @a file , @a argv , @a mode ). * * @param file a string containing the pathname of a program to execute. * @param argv a vector of argument strings passed to the new program. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, const argv_type&, pmode) */ void open( const std::string& file, const argv_type& argv, pmode mode = pstdout|pstdin ) { this->do_open(file, argv, mode); } /** * @brief Set streambuf to read from process' @c stdout. * @return @c *this */ basic_pstream& out() { this->buf_.read_err(false); return *this; } /** * @brief Set streambuf to read from process' @c stderr. * @return @c *this */ basic_pstream& err() { this->buf_.read_err(true); return *this; } }; /** * @class basic_rpstream * @brief Class template for Restricted PStreams. * * Writing to an rpstream opened with @c pmode @c pstdin writes to the * standard input of the command. * It is not possible to read directly from an rpstream object, to use * an rpstream as in istream you must call either basic_rpstream::out() * or basic_rpstream::err(). This is to prevent accidental reads from * the wrong input source. If the rpstream was not opened with @c pmode * @c pstderr then the class cannot read the process' @c stderr, and * basic_rpstream::err() will return an istream that reads from the * process' @c stdout, and vice versa. * Reading from an rpstream opened with @c pmode @c pstdout and/or * @c pstderr reads the command's standard output and/or standard error. * Any of the process' @c stdin, @c stdout or @c stderr that is not * connected to the pstream (as specified by the @c pmode) * will be the same as the process that created the pstream object, * unless altered by the command itself. */ template > class basic_rpstream : public std::basic_ostream , private std::basic_istream , private pstream_common , virtual public pstreams { typedef std::basic_ostream ostream_type; typedef std::basic_istream istream_type; typedef pstream_common pbase_type; using pbase_type::buf_; // declare name in this scope public: /// Type used to specify how to connect to the process. typedef typename pbase_type::pmode pmode; /// Type used to hold the arguments for a command. typedef typename pbase_type::argv_type argv_type; /// Default constructor, creates an uninitialised stream. basic_rpstream() : ostream_type(NULL), istream_type(NULL), pbase_type() { } /** * @brief Constructor that initialises the stream by starting a process. * * Initialises the stream buffer by calling do_open() with the supplied * arguments. * * @param cmd a string containing a shell command. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, pmode) */ explicit basic_rpstream(const std::string& cmd, pmode mode = pstdout|pstdin) : ostream_type(NULL) , istream_type(NULL) , pbase_type(cmd, mode) { } /** * @brief Constructor that initialises the stream by starting a process. * * Initialises the stream buffer by calling do_open() with the supplied * arguments. * * @param file a string containing the pathname of a program to execute. * @param argv a vector of argument strings passed to the new program. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, const argv_type&, pmode) */ basic_rpstream( const std::string& file, const argv_type& argv, pmode mode = pstdout|pstdin ) : ostream_type(NULL), istream_type(NULL), pbase_type(file, argv, mode) { } /** * @brief Constructor that initialises the stream by starting a process. * * Initialises the stream buffer by calling * @c do_open(argv[0],argv,mode) * * @param argv a vector of argument strings passed to the new program. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, const argv_type&, pmode) */ explicit basic_rpstream(const argv_type& argv, pmode mode = pstdout|pstdin) : ostream_type(NULL), istream_type(NULL), pbase_type(argv.at(0), argv, mode) { } #if __cplusplus >= 201103L /** * @brief Constructor that initialises the stream by starting a process. * * @param l a list of argument strings passed to the new program. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, const argv_type&, pmode) */ template explicit basic_rpstream(std::initializer_list l, pmode mode = pstdout|pstdin) : basic_rpstream(argv_type(l.begin(), l.end()), mode) { } #endif /// Destructor ~basic_rpstream() { } /** * @brief Start a process. * * Calls do_open( @a cmd , @a mode ). * * @param cmd a string containing a shell command. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, pmode) */ void open(const std::string& cmd, pmode mode = pstdout|pstdin) { this->do_open(cmd, mode); } /** * @brief Start a process. * * Calls do_open( @a file , @a argv , @a mode ). * * @param file a string containing the pathname of a program to execute. * @param argv a vector of argument strings passed to the new program. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, const argv_type&, pmode) */ void open( const std::string& file, const argv_type& argv, pmode mode = pstdout|pstdin ) { this->do_open(file, argv, mode); } /** * @brief Obtain a reference to the istream that reads * the process' @c stdout. * @return @c *this */ istream_type& out() { this->buf_.read_err(false); return *this; } /** * @brief Obtain a reference to the istream that reads * the process' @c stderr. * @return @c *this */ istream_type& err() { this->buf_.read_err(true); return *this; } }; /// Type definition for common template specialisation. typedef basic_pstreambuf pstreambuf; /// Type definition for common template specialisation. typedef basic_ipstream ipstream; /// Type definition for common template specialisation. typedef basic_opstream opstream; /// Type definition for common template specialisation. typedef basic_pstream pstream; /// Type definition for common template specialisation. typedef basic_rpstream rpstream; /** * When inserted into an output pstream the manipulator calls * basic_pstreambuf::peof() to close the output pipe, * causing the child process to receive the end-of-file indicator * on subsequent reads from its @c stdin stream. * * @brief Manipulator to close the pipe connected to the process' stdin. * @param s An output PStream class. * @return The stream object the manipulator was invoked on. * @see basic_pstreambuf::peof() * @relates basic_opstream basic_pstream basic_rpstream */ template inline std::basic_ostream& peof(std::basic_ostream& s) { typedef basic_pstreambuf pstreambuf_type; if (pstreambuf_type* p = dynamic_cast(s.rdbuf())) p->peof(); return s; } /* * member definitions for pstreambuf */ /** * @class basic_pstreambuf * Provides underlying streambuf functionality for the PStreams classes. */ /** Creates an uninitialised stream buffer. */ template inline basic_pstreambuf::basic_pstreambuf() : ppid_(-1) // initialise to -1 to indicate no process run yet. , wpipe_(-1) , wbuffer_(NULL) , rsrc_(rsrc_out) , status_(-1) , error_(0) { init_rbuffers(); } /** * Initialises the stream buffer by calling open() with the supplied * arguments. * * @param cmd a string containing a shell command. * @param mode the I/O mode to use when opening the pipe. * @see open() */ template inline basic_pstreambuf::basic_pstreambuf(const std::string& cmd, pmode mode) : ppid_(-1) // initialise to -1 to indicate no process run yet. , wpipe_(-1) , wbuffer_(NULL) , rsrc_(rsrc_out) , status_(-1) , error_(0) { init_rbuffers(); open(cmd, mode); } /** * Initialises the stream buffer by calling open() with the supplied * arguments. * * @param file a string containing the name of a program to execute. * @param argv a vector of argument strings passsed to the new program. * @param mode the I/O mode to use when opening the pipe. * @see open() */ template inline basic_pstreambuf::basic_pstreambuf( const std::string& file, const argv_type& argv, pmode mode ) : ppid_(-1) // initialise to -1 to indicate no process run yet. , wpipe_(-1) , wbuffer_(NULL) , rsrc_(rsrc_out) , status_(-1) , error_(0) { init_rbuffers(); open(file, argv, mode); } /** * Closes the stream by calling close(). * @see close() */ template inline basic_pstreambuf::~basic_pstreambuf() { close(); } /** * Starts a new process by passing @a command to the shell (/bin/sh) * and opens pipes to the process with the specified @a mode. * * If @a mode contains @c pstdout the initial read source will be * the child process' stdout, otherwise if @a mode contains @c pstderr * the initial read source will be the child's stderr. * * Will duplicate the actions of the shell in searching for an * executable file if the specified file name does not contain a slash (/) * character. * * @warning * There is no way to tell whether the shell command succeeded, this * function will always succeed unless resource limits (such as * memory usage, or number of processes or open files) are exceeded. * This means is_open() will return true even if @a command cannot * be executed. * Use pstreambuf::open(const std::string&, const argv_type&, pmode) * if you need to know whether the command failed to execute. * * @param command a string containing a shell command. * @param mode a bitwise OR of one or more of @c out, @c in, @c err. * @return NULL if the shell could not be started or the * pipes could not be opened, @c this otherwise. * @see execl(3) */ template basic_pstreambuf* basic_pstreambuf::open(const std::string& command, pmode mode) { const char * shell_path = "/bin/sh"; #if 0 const std::string argv[] = { "sh", "-c", command }; return this->open(shell_path, argv_type(argv, argv+3), mode); #else basic_pstreambuf* ret = NULL; if (!is_open()) { switch(fork(mode)) { case 0 : // this is the new process, exec command ::execl(shell_path, "sh", "-c", command.c_str(), (char*)NULL); // can only reach this point if exec() failed // parent can get exit code from waitpid() ::_exit(errno); // using std::exit() would make static dtors run twice case -1 : // couldn't fork, error already handled in pstreambuf::fork() break; default : // this is the parent process // activate buffers create_buffers(mode); ret = this; } } return ret; #endif } /** * @brief Helper function to close a file descriptor. * * Inspects @a fd and calls close(3) if it has a non-negative value. * * @param fd a file descriptor. * @relates basic_pstreambuf */ inline void close_fd(pstreams::fd_type& fd) { if (fd >= 0 && ::close(fd) == 0) fd = -1; } /** * @brief Helper function to close an array of file descriptors. * * Calls @c close_fd() on each member of the array. * The length of the array is determined automatically by * template argument deduction to avoid errors. * * @param fds an array of file descriptors. * @relates basic_pstreambuf */ template inline void close_fd_array(pstreams::fd_type (&fds)[N]) { for (std::size_t i = 0; i < N; ++i) close_fd(fds[i]); } /** * Starts a new process by executing @a file with the arguments in * @a argv and opens pipes to the process with the specified @a mode. * * By convention @c argv[0] should be the file name of the file being * executed. * * If @a mode contains @c pstdout the initial read source will be * the child process' stdout, otherwise if @a mode contains @c pstderr * the initial read source will be the child's stderr. * * Will duplicate the actions of the shell in searching for an * executable file if the specified file name does not contain a slash (/) * character. * * Iff @a file is successfully executed then is_open() will return true. * Otherwise, pstreambuf::error() can be used to obtain the value of * @c errno that was set by execvp(3) in the child process. * * The exit status of the new process will be returned by * pstreambuf::status() after pstreambuf::exited() returns true. * * @param file a string containing the pathname of a program to execute. * @param argv a vector of argument strings passed to the new program. * @param mode a bitwise OR of one or more of @c out, @c in and @c err. * @return NULL if a pipe could not be opened or if the program could * not be executed, @c this otherwise. * @see execvp(3) */ template basic_pstreambuf* basic_pstreambuf::open( const std::string& file, const argv_type& argv, pmode mode ) { basic_pstreambuf* ret = NULL; if (!is_open()) { // constants for read/write ends of pipe enum { RD, WR }; // open another pipe and set close-on-exec fd_type ck_exec[] = { -1, -1 }; if (-1 == ::pipe(ck_exec) || -1 == ::fcntl(ck_exec[RD], F_SETFD, FD_CLOEXEC) || -1 == ::fcntl(ck_exec[WR], F_SETFD, FD_CLOEXEC)) { error_ = errno; close_fd_array(ck_exec); } else { switch(fork(mode)) { case 0 : // this is the new process, exec command { char** arg_v = new char*[argv.size()+1]; for (std::size_t i = 0; i < argv.size(); ++i) { const std::string& src = argv[i]; char*& dest = arg_v[i]; dest = new char[src.size()+1]; dest[ src.copy(dest, src.size()) ] = '\0'; } arg_v[argv.size()] = NULL; ::execvp(file.c_str(), arg_v); // can only reach this point if exec() failed // parent can get error code from ck_exec pipe error_ = errno; while (::write(ck_exec[WR], &error_, sizeof(error_)) == -1 && errno == EINTR) { } ::close(ck_exec[WR]); ::close(ck_exec[RD]); ::_exit(error_); // using std::exit() would make static dtors run twice } case -1 : // couldn't fork, error already handled in pstreambuf::fork() close_fd_array(ck_exec); break; default : // this is the parent process // check child called exec() successfully ::close(ck_exec[WR]); switch (::read(ck_exec[RD], &error_, sizeof(error_))) { case 0: // activate buffers create_buffers(mode); ret = this; break; case -1: error_ = errno; break; default: // error_ contains error code from child // call wait() to clean up and set ppid_ to 0 this->wait(); break; } ::close(ck_exec[RD]); } } } return ret; } /** * Creates pipes as specified by @a mode and calls @c fork() to create * a new process. If the fork is successful the parent process stores * the child's PID and the opened pipes and the child process replaces * its standard streams with the opened pipes. * * If an error occurs the error code will be set to one of the possible * errors for @c pipe() or @c fork(). * See your system's documentation for these error codes. * * @param mode an OR of pmodes specifying which of the child's * standard streams to connect to. * @return On success the PID of the child is returned in the parent's * context and zero is returned in the child's context. * On error -1 is returned and the error code is set appropriately. */ template pid_t basic_pstreambuf::fork(pmode mode) { pid_t pid = -1; // Three pairs of file descriptors, for pipes connected to the // process' stdin, stdout and stderr // (stored in a single array so close_fd_array() can close all at once) fd_type fd[] = { -1, -1, -1, -1, -1, -1 }; fd_type* const pin = fd; fd_type* const pout = fd+2; fd_type* const perr = fd+4; // constants for read/write ends of pipe enum { RD, WR }; // N.B. // For the pstreambuf pin is an output stream and // pout and perr are input streams. if (!error_ && mode&pstdin && ::pipe(pin)) error_ = errno; if (!error_ && mode&pstdout && ::pipe(pout)) error_ = errno; if (!error_ && mode&pstderr && ::pipe(perr)) error_ = errno; if (!error_) { pid = ::fork(); switch (pid) { case 0 : { // this is the new process // for each open pipe close one end and redirect the // respective standard stream to the other end if (*pin >= 0) { ::close(pin[WR]); ::dup2(pin[RD], STDIN_FILENO); ::close(pin[RD]); } if (*pout >= 0) { ::close(pout[RD]); ::dup2(pout[WR], STDOUT_FILENO); ::close(pout[WR]); } if (*perr >= 0) { ::close(perr[RD]); ::dup2(perr[WR], STDERR_FILENO); ::close(perr[WR]); } #ifdef _POSIX_JOB_CONTROL if (mode&newpg) ::setpgid(0, 0); // Change to a new process group #endif break; } case -1 : { // couldn't fork for some reason error_ = errno; // close any open pipes close_fd_array(fd); break; } default : { // this is the parent process, store process' pid ppid_ = pid; // store one end of open pipes and close other end if (*pin >= 0) { wpipe_ = pin[WR]; ::close(pin[RD]); } if (*pout >= 0) { rpipe_[rsrc_out] = pout[RD]; ::close(pout[WR]); } if (*perr >= 0) { rpipe_[rsrc_err] = perr[RD]; ::close(perr[WR]); } } } } else { // close any pipes we opened before failure close_fd_array(fd); } return pid; } /** * Closes all pipes and calls wait() to wait for the process to finish. * If an error occurs the error code will be set to one of the possible * errors for @c waitpid(). * See your system's documentation for these errors. * * @return @c this on successful close or @c NULL if there is no * process to close or if an error occurs. */ template basic_pstreambuf* basic_pstreambuf::close() { const bool running = is_open(); sync(); // this might call wait() and reap the child process // rather than trying to work out whether or not we need to clean up // just do it anyway, all cleanup functions are safe to call twice. destroy_buffers(pstdin|pstdout|pstderr); // close pipes before wait() so child gets EOF/SIGPIPE close_fd(wpipe_); close_fd_array(rpipe_); do { error_ = 0; } while (wait() == -1 && error() == EINTR); return running ? this : NULL; } /** * Called on construction to initialise the arrays used for reading. */ template inline void basic_pstreambuf::init_rbuffers() { rpipe_[rsrc_out] = rpipe_[rsrc_err] = -1; rbuffer_[rsrc_out] = rbuffer_[rsrc_err] = NULL; rbufstate_[0] = rbufstate_[1] = rbufstate_[2] = NULL; } template void basic_pstreambuf::create_buffers(pmode mode) { if (mode & pstdin) { delete[] wbuffer_; wbuffer_ = new char_type[bufsz]; this->setp(wbuffer_, wbuffer_ + bufsz); } if (mode & pstdout) { delete[] rbuffer_[rsrc_out]; rbuffer_[rsrc_out] = new char_type[bufsz]; rsrc_ = rsrc_out; this->setg(rbuffer_[rsrc_out] + pbsz, rbuffer_[rsrc_out] + pbsz, rbuffer_[rsrc_out] + pbsz); } if (mode & pstderr) { delete[] rbuffer_[rsrc_err]; rbuffer_[rsrc_err] = new char_type[bufsz]; if (!(mode & pstdout)) { rsrc_ = rsrc_err; this->setg(rbuffer_[rsrc_err] + pbsz, rbuffer_[rsrc_err] + pbsz, rbuffer_[rsrc_err] + pbsz); } } } template void basic_pstreambuf::destroy_buffers(pmode mode) { if (mode & pstdin) { this->setp(NULL, NULL); delete[] wbuffer_; wbuffer_ = NULL; } if (mode & pstdout) { if (rsrc_ == rsrc_out) this->setg(NULL, NULL, NULL); delete[] rbuffer_[rsrc_out]; rbuffer_[rsrc_out] = NULL; } if (mode & pstderr) { if (rsrc_ == rsrc_err) this->setg(NULL, NULL, NULL); delete[] rbuffer_[rsrc_err]; rbuffer_[rsrc_err] = NULL; } } template typename basic_pstreambuf::buf_read_src basic_pstreambuf::switch_read_buffer(buf_read_src src) { if (rsrc_ != src) { char_type* tmpbufstate[] = {this->eback(), this->gptr(), this->egptr()}; this->setg(rbufstate_[0], rbufstate_[1], rbufstate_[2]); for (std::size_t i = 0; i < 3; ++i) rbufstate_[i] = tmpbufstate[i]; rsrc_ = src; } return rsrc_; } /** * Suspends execution and waits for the associated process to exit, or * until a signal is delivered whose action is to terminate the current * process or to call a signal handling function. If the process has * already exited (i.e. it is a "zombie" process) then wait() returns * immediately. Waiting for the child process causes all its system * resources to be freed. * * error() will return EINTR if wait() is interrupted by a signal. * * @param nohang true to return immediately if the process has not exited. * @return 1 if the process has exited and wait() has not yet been called. * 0 if @a nohang is true and the process has not exited yet. * -1 if no process has been started or if an error occurs, * in which case the error can be found using error(). */ template int basic_pstreambuf::wait(bool nohang) { int child_exited = -1; if (is_open()) { int exit_status; switch(::waitpid(ppid_, &exit_status, nohang ? WNOHANG : 0)) { case 0 : // nohang was true and process has not exited child_exited = 0; break; case -1 : error_ = errno; break; default : // process has exited ppid_ = 0; status_ = exit_status; child_exited = 1; // Close wpipe, would get SIGPIPE if we used it. destroy_buffers(pstdin); close_fd(wpipe_); // Must free read buffers and pipes on destruction // or next call to open()/close() break; } } return child_exited; } /** * Sends the specified signal to the process. A signal can be used to * terminate a child process that would not exit otherwise. * * If an error occurs the error code will be set to one of the possible * errors for @c kill(). See your system's documentation for these errors. * * @param signal A signal to send to the child process. * @return @c this or @c NULL if @c kill() fails. */ template inline basic_pstreambuf* basic_pstreambuf::kill(int signal) { basic_pstreambuf* ret = NULL; if (is_open()) { if (::kill(ppid_, signal)) error_ = errno; else { #if 0 // TODO call exited() to check for exit and clean up? leave to user? if (signal==SIGTERM || signal==SIGKILL) this->exited(); #endif ret = this; } } return ret; } /** * Sends the specified signal to the process group of the child process. * A signal can be used to terminate a child process that would not exit * otherwise, or to kill the process and its own children. * * If an error occurs the error code will be set to one of the possible * errors for @c getpgid() or @c kill(). See your system's documentation * for these errors. If the child is in the current process group then * NULL will be returned and the error code set to EPERM. * * @param signal A signal to send to the child process. * @return @c this on success or @c NULL on failure. */ template inline basic_pstreambuf* basic_pstreambuf::killpg(int signal) { basic_pstreambuf* ret = NULL; #ifdef _POSIX_JOB_CONTROL if (is_open()) { pid_t pgid = ::getpgid(ppid_); if (pgid == -1) error_ = errno; else if (pgid == ::getpgrp()) error_ = EPERM; // Don't commit suicide else if (::killpg(pgid, signal)) error_ = errno; else ret = this; } #else error_ = ENOTSUP; #endif return ret; } /** * This function can call pstreambuf::wait() and so may change the * object's state if the child process has already exited. * * @return True if the associated process has exited, false otherwise. * @see basic_pstreambuf::wait() */ template inline bool basic_pstreambuf::exited() { return ppid_ == 0 || wait(true)==1; } /** * @return The exit status of the child process, or -1 if wait() * has not yet been called to wait for the child to exit. * @see basic_pstreambuf::wait() */ template inline int basic_pstreambuf::status() const { return status_; } /** * @return The error code of the most recently failed operation, or zero. */ template inline int basic_pstreambuf::error() const { return error_; } /** * Closes the output pipe, causing the child process to receive the * end-of-file indicator on subsequent reads from its @c stdin stream. */ template inline void basic_pstreambuf::peof() { sync(); destroy_buffers(pstdin); close_fd(wpipe_); } /** * Unlike pstreambuf::exited(), this function will not call wait() and * so will not change the object's state. This means that once a child * process is executed successfully this function will continue to * return true even after the process exits (until wait() is called.) * * @return true if a previous call to open() succeeded and wait() has * not been called and determined that the process has exited, * false otherwise. */ template inline bool basic_pstreambuf::is_open() const { return ppid_ > 0; } /** * Toggle the stream used for reading. If @a readerr is @c true then the * process' @c stderr output will be used for subsequent extractions, if * @a readerr is false the the process' stdout will be used. * @param readerr @c true to read @c stderr, @c false to read @c stdout. * @return @c true if the requested stream is open and will be used for * subsequent extractions, @c false otherwise. */ template inline bool basic_pstreambuf::read_err(bool readerr) { buf_read_src src = readerr ? rsrc_err : rsrc_out; if (rpipe_[src]>=0) { switch_read_buffer(src); return true; } return false; } /** * Called when the internal character buffer is not present or is full, * to transfer the buffer contents to the pipe. * * @param c a character to be written to the pipe. * @return @c traits_type::eof() if an error occurs, otherwise if @a c * is not equal to @c traits_type::eof() it will be buffered and * a value other than @c traits_type::eof() returned to indicate * success. */ template typename basic_pstreambuf::int_type basic_pstreambuf::overflow(int_type c) { if (!empty_buffer()) return traits_type::eof(); else if (!traits_type::eq_int_type(c, traits_type::eof())) return this->sputc(c); else return traits_type::not_eof(c); } template int basic_pstreambuf::sync() { return !exited() && empty_buffer() ? 0 : -1; } /** * @param s character buffer. * @param n buffer length. * @return the number of characters written. */ template std::streamsize basic_pstreambuf::xsputn(const char_type* s, std::streamsize n) { std::streamsize done = 0; while (done < n) { if (std::streamsize nbuf = this->epptr() - this->pptr()) { nbuf = std::min(nbuf, n - done); traits_type::copy(this->pptr(), s + done, nbuf); this->pbump(nbuf); done += nbuf; } else if (!empty_buffer()) break; } return done; } /** * @return true if the buffer was emptied, false otherwise. */ template bool basic_pstreambuf::empty_buffer() { const std::streamsize count = this->pptr() - this->pbase(); if (count > 0) { const std::streamsize written = this->write(this->wbuffer_, count); if (written > 0) { if (const std::streamsize unwritten = count - written) traits_type::move(this->pbase(), this->pbase()+written, unwritten); this->pbump(-written); return true; } } return false; } /** * Called when the internal character buffer is is empty, to re-fill it * from the pipe. * * @return The first available character in the buffer, * or @c traits_type::eof() in case of failure. */ template typename basic_pstreambuf::int_type basic_pstreambuf::underflow() { if (this->gptr() < this->egptr() || fill_buffer()) return traits_type::to_int_type(*this->gptr()); else return traits_type::eof(); } /** * Attempts to make @a c available as the next character to be read by * @c sgetc(). * * @param c a character to make available for extraction. * @return @a c if the character can be made available, * @c traits_type::eof() otherwise. */ template typename basic_pstreambuf::int_type basic_pstreambuf::pbackfail(int_type c) { if (this->gptr() != this->eback()) { this->gbump(-1); if (!traits_type::eq_int_type(c, traits_type::eof())) *this->gptr() = traits_type::to_char_type(c); return traits_type::not_eof(c); } else return traits_type::eof(); } template std::streamsize basic_pstreambuf::showmanyc() { int avail = 0; if (sizeof(char_type) == 1) avail = fill_buffer(true) ? this->egptr() - this->gptr() : -1; #ifdef FIONREAD else { if (::ioctl(rpipe(), FIONREAD, &avail) == -1) avail = -1; else if (avail) avail /= sizeof(char_type); } #endif return std::streamsize(avail); } /** * @return true if the buffer was filled, false otherwise. */ template bool basic_pstreambuf::fill_buffer(bool non_blocking) { const std::streamsize pb1 = this->gptr() - this->eback(); const std::streamsize pb2 = pbsz; const std::streamsize npb = std::min(pb1, pb2); char_type* const rbuf = rbuffer(); if (npb) traits_type::move(rbuf + pbsz - npb, this->gptr() - npb, npb); std::streamsize rc = -1; if (non_blocking) { const int flags = ::fcntl(rpipe(), F_GETFL); if (flags != -1) { const bool blocking = !(flags & O_NONBLOCK); if (blocking) ::fcntl(rpipe(), F_SETFL, flags | O_NONBLOCK); // set non-blocking error_ = 0; rc = read(rbuf + pbsz, bufsz - pbsz); if (rc == -1 && error_ == EAGAIN) // nothing available rc = 0; else if (rc == 0) // EOF rc = -1; if (blocking) ::fcntl(rpipe(), F_SETFL, flags); // restore } } else rc = read(rbuf + pbsz, bufsz - pbsz); if (rc > 0 || (rc == 0 && non_blocking)) { this->setg( rbuf + pbsz - npb, rbuf + pbsz, rbuf + pbsz + rc ); return true; } else { this->setg(NULL, NULL, NULL); return false; } } /** * Writes up to @a n characters to the pipe from the buffer @a s. * * @param s character buffer. * @param n buffer length. * @return the number of characters written. */ template inline std::streamsize basic_pstreambuf::write(const char_type* s, std::streamsize n) { std::streamsize nwritten = 0; if (wpipe() >= 0) { nwritten = ::write(wpipe(), s, n * sizeof(char_type)); if (nwritten == -1) error_ = errno; else nwritten /= sizeof(char_type); } return nwritten; } /** * Reads up to @a n characters from the pipe to the buffer @a s. * * @param s character buffer. * @param n buffer length. * @return the number of characters read. */ template inline std::streamsize basic_pstreambuf::read(char_type* s, std::streamsize n) { std::streamsize nread = 0; if (rpipe() >= 0) { nread = ::read(rpipe(), s, n * sizeof(char_type)); if (nread == -1) error_ = errno; else nread /= sizeof(char_type); } return nread; } /** @return a reference to the output file descriptor */ template inline pstreams::fd_type& basic_pstreambuf::wpipe() { return wpipe_; } /** @return a reference to the active input file descriptor */ template inline pstreams::fd_type& basic_pstreambuf::rpipe() { return rpipe_[rsrc_]; } /** @return a reference to the specified input file descriptor */ template inline pstreams::fd_type& basic_pstreambuf::rpipe(buf_read_src which) { return rpipe_[which]; } /** @return a pointer to the start of the active input buffer area. */ template inline typename basic_pstreambuf::char_type* basic_pstreambuf::rbuffer() { return rbuffer_[rsrc_]; } /* * member definitions for pstream_common */ /** * @class pstream_common * Abstract Base Class providing common functionality for basic_ipstream, * basic_opstream and basic_pstream. * pstream_common manages the basic_pstreambuf stream buffer that is used * by the derived classes to initialise an iostream class. */ /** Creates an uninitialised stream. */ template inline pstream_common::pstream_common() : std::basic_ios(NULL) , command_() , buf_() { this->std::basic_ios::rdbuf(&buf_); } /** * Initialises the stream buffer by calling * do_open( @a command , @a mode ) * * @param cmd a string containing a shell command. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, pmode) */ template inline pstream_common::pstream_common(const std::string& cmd, pmode mode) : std::basic_ios(NULL) , command_(cmd) , buf_() { this->std::basic_ios::rdbuf(&buf_); do_open(cmd, mode); } /** * Initialises the stream buffer by calling * do_open( @a file , @a argv , @a mode ) * * @param file a string containing the pathname of a program to execute. * @param argv a vector of argument strings passed to the new program. * @param mode the I/O mode to use when opening the pipe. * @see do_open(const std::string&, const argv_type&, pmode) */ template inline pstream_common::pstream_common( const std::string& file, const argv_type& argv, pmode mode ) : std::basic_ios(NULL) , command_(file) , buf_() { this->std::basic_ios::rdbuf(&buf_); do_open(file, argv, mode); } /** * This is a pure virtual function to make @c pstream_common abstract. * Because it is the destructor it will be called by derived classes * and so must be defined. It is also protected, to discourage use of * the PStreams classes through pointers or references to the base class. * * @sa If defining a pure virtual seems odd you should read * http://www.gotw.ca/gotw/031.htm (and the rest of the site as well!) */ template inline pstream_common::~pstream_common() { } /** * Calls rdbuf()->open( @a command , @a mode ) * and sets @c failbit on error. * * @param cmd a string containing a shell command. * @param mode the I/O mode to use when opening the pipe. * @see basic_pstreambuf::open(const std::string&, pmode) */ template inline void pstream_common::do_open(const std::string& cmd, pmode mode) { if (!buf_.open((command_=cmd), mode)) this->setstate(std::ios_base::failbit); } /** * Calls rdbuf()->open( @a file, @a argv, @a mode ) * and sets @c failbit on error. * * @param file a string containing the pathname of a program to execute. * @param argv a vector of argument strings passed to the new program. * @param mode the I/O mode to use when opening the pipe. * @see basic_pstreambuf::open(const std::string&, const argv_type&, pmode) */ template inline void pstream_common::do_open( const std::string& file, const argv_type& argv, pmode mode ) { if (!buf_.open((command_=file), argv, mode)) this->setstate(std::ios_base::failbit); } /** Calls rdbuf->close() and sets @c failbit on error. */ template inline void pstream_common::close() { if (!buf_.close()) this->setstate(std::ios_base::failbit); } /** * @return rdbuf()->is_open(). * @see basic_pstreambuf::is_open() */ template inline bool pstream_common::is_open() const { return buf_.is_open(); } /** @return a string containing the command used to initialise the stream. */ template inline const std::string& pstream_common::command() const { return command_; } /** @return a pointer to the private stream buffer member. */ // TODO document behaviour if buffer replaced. template inline typename pstream_common::streambuf_type* pstream_common::rdbuf() const { return const_cast(&buf_); } #if REDI_EVISCERATE_PSTREAMS /** * @def REDI_EVISCERATE_PSTREAMS * If this macro has a non-zero value then certain internals of the * @c basic_pstreambuf template class are exposed. In general this is * a Bad Thing, as the internal implementation is largely undocumented * and may be subject to change at any time, so this feature is only * provided because it might make PStreams useful in situations where * it is necessary to do Bad Things. */ /** * @warning This function exposes the internals of the stream buffer and * should be used with caution. It is the caller's responsibility * to flush streams etc. in order to clear any buffered data. * The POSIX.1 function fdopen(3) is used to obtain the * @c FILE pointers from the streambuf's private file descriptor * members so consult your system's documentation for * fdopen(3). * * @param in A FILE* that will refer to the process' stdin. * @param out A FILE* that will refer to the process' stdout. * @param err A FILE* that will refer to the process' stderr. * @return An OR of zero or more of @c pstdin, @c pstdout, @c pstderr. * * For each open stream shared with the child process a @c FILE* is * obtained and assigned to the corresponding parameter. For closed * streams @c NULL is assigned to the parameter. * The return value can be tested to see which parameters should be * @c !NULL by masking with the corresponding @c pmode value. * * @see fdopen(3) */ template std::size_t basic_pstreambuf::fopen(FILE*& in, FILE*& out, FILE*& err) { in = out = err = NULL; std::size_t open_files = 0; if (wpipe() > -1) { if ((in = ::fdopen(wpipe(), "w"))) { open_files |= pstdin; } } if (rpipe(rsrc_out) > -1) { if ((out = ::fdopen(rpipe(rsrc_out), "r"))) { open_files |= pstdout; } } if (rpipe(rsrc_err) > -1) { if ((err = ::fdopen(rpipe(rsrc_err), "r"))) { open_files |= pstderr; } } return open_files; } /** * @warning This function exposes the internals of the stream buffer and * should be used with caution. * * @param in A FILE* that will refer to the process' stdin. * @param out A FILE* that will refer to the process' stdout. * @param err A FILE* that will refer to the process' stderr. * @return A bitwise-or of zero or more of @c pstdin, @c pstdout, @c pstderr. * @see basic_pstreambuf::fopen() */ template inline std::size_t pstream_common::fopen(FILE*& fin, FILE*& fout, FILE*& ferr) { return buf_.fopen(fin, fout, ferr); } #endif // REDI_EVISCERATE_PSTREAMS } // namespace redi /** * @mainpage PStreams Reference * @htmlinclude mainpage.html */ #endif // REDI_PSTREAM_H_SEEN /* This is the end of code block taken from pstream.h. * The following codes are for MM-align */ /* File parsing and basic geometry operations */ void PrintErrorAndQuit(const string sErrorString) { cout << sErrorString << endl; exit(1); } template inline T getmin(const T &a, const T &b) { return b void NewArray(A *** array, int Narray1, int Narray2) { *array=new A* [Narray1]; for(int i=0; i void DeleteArray(A *** array, int Narray) { for(int i=0; i &line_vec, const char delimiter=' ') { bool within_word = false; for (size_t pos=0;pos >&PDB_lines, vector &chainID_list, vector &mol_vec, const int ter_opt, const int infmt_opt, const string atom_opt, const int split_opt, const int het_opt) { size_t i=0; // resi i.e. atom index string line; char chainID=0; string resi=""; bool select_atom=false; size_t model_idx=0; vector tmp_str_vec; int compress_type=0; // uncompressed file ifstream fin; redi::ipstream fin_gz; // if file is compressed if (filename.size()>=3 && filename.substr(filename.size()-3,3)==".gz") { fin_gz.open("zcat '"+filename+"'"); compress_type=1; } else if (filename.size()>=4 && filename.substr(filename.size()-4,4)==".bz2") { fin_gz.open("bzcat '"+filename+"'"); compress_type=2; } else fin.open(filename.c_str()); if (infmt_opt==0||infmt_opt==-1) // PDB format { while (compress_type?fin_gz.good():fin.good()) { if (compress_type) getline(fin_gz, line); else getline(fin, line); if (infmt_opt==-1 && line.compare(0,5,"loop_")==0) // PDBx/mmCIF return get_PDB_lines(filename,PDB_lines,chainID_list, mol_vec, ter_opt, 3, atom_opt, split_opt,het_opt); if (i > 0) { if (ter_opt>=1 && line.compare(0,3,"END")==0) break; else if (ter_opt>=3 && line.compare(0,3,"TER")==0) break; } if (split_opt && line.compare(0,3,"END")==0) chainID=0; if (line.size()>=54 && (line[16]==' ' || line[16]=='A') && ( (line.compare(0, 6, "ATOM ")==0) || (line.compare(0, 6, "HETATM")==0 && het_opt==1) || (line.compare(0, 6, "HETATM")==0 && het_opt==2 && line.compare(17,3, "MSE")==0))) { if (atom_opt=="auto") { if (line[17]==' ' && (line[18]=='D'||line[18]==' ')) select_atom=(line.compare(12,4," C3'")==0); else select_atom=(line.compare(12,4," CA ")==0); } else select_atom=(line.compare(12,4,atom_opt)==0); if (select_atom) { if (!chainID) { chainID=line[21]; model_idx++; stringstream i8_stream; i=0; if (split_opt==2) // split by chain { if (chainID==' ') { if (ter_opt>=1) i8_stream << ":_"; else i8_stream<<':'<=1) i8_stream << ':' << chainID; else i8_stream<<':'<=2 && chainID!=line[21]) break; if (split_opt==2 && chainID!=line[21]) { chainID=line[21]; i=0; stringstream i8_stream; if (chainID==' ') { if (ter_opt>=1) i8_stream << ":_"; else i8_stream<<':'<=1) i8_stream << ':' << chainID; else i8_stream<<':'<>L>>x>>y>>z; else fin >>L>>x>>y>>z; if (compress_type) getline(fin_gz, line); else getline(fin, line); if (!(compress_type?fin_gz.good():fin.good())) break; model_idx++; stringstream i8_stream; i8_stream << ':' << model_idx; chainID_list.push_back(i8_stream.str()); PDB_lines.push_back(tmp_str_vec); mol_vec.push_back(0); for (i=0;i>x>>y>>z; else fin >>x>>y>>z; i8_stream<<"ATOM "<='a' && line[0]<='z') mol_vec.back()++; // RNA else mol_vec.back()--; } } } else if (infmt_opt==3) // PDBx/mmCIF format { bool loop_ = false; // not reading following content map _atom_site; int atom_site_pos; vector line_vec; string alt_id="."; // alternative location indicator string asym_id="."; // this is similar to chainID, except that // chainID is char while asym_id is a string // with possibly multiple char string prev_asym_id=""; string AA=""; // residue name string atom=""; string prev_resi=""; string model_index=""; // the same as model_idx but type is string stringstream i8_stream; while (compress_type?fin_gz.good():fin.good()) { if (compress_type) getline(fin_gz, line); else getline(fin, line); if (line.size()==0) continue; if (loop_) loop_ = line.compare(0,2,"# "); if (!loop_) { if (line.compare(0,5,"loop_")) continue; while(1) { if (compress_type) { if (fin_gz.good()) getline(fin_gz, line); else PrintErrorAndQuit("ERROR! Unexpected end of "+filename); } else { if (fin.good()) getline(fin, line); else PrintErrorAndQuit("ERROR! Unexpected end of "+filename); } if (line.size()) break; } if (line.compare(0,11,"_atom_site.")) continue; loop_=true; _atom_site.clear(); atom_site_pos=0; _atom_site[line.substr(11,line.size()-12)]=atom_site_pos; while(1) { if (compress_type) getline(fin_gz, line); else getline(fin, line); if (line.size()==0) continue; if (line.compare(0,11,"_atom_site.")) break; _atom_site[line.substr(11,line.size()-12)]=++atom_site_pos; } if (_atom_site.count("group_PDB")* _atom_site.count("label_atom_id")* _atom_site.count("label_comp_id")* (_atom_site.count("auth_asym_id")+ _atom_site.count("label_asym_id"))* (_atom_site.count("auth_seq_id")+ _atom_site.count("label_seq_id"))* _atom_site.count("Cartn_x")* _atom_site.count("Cartn_y")* _atom_site.count("Cartn_z")==0) { loop_ = false; cerr<<"Warning! Missing one of the following _atom_site data items: group_PDB, label_atom_id, label_comp_id, auth_asym_id/label_asym_id, auth_seq_id/label_seq_id, Cartn_x, Cartn_y, Cartn_z"<=5) continue; AA=line_vec[_atom_site["label_comp_id"]]; // residue name if (AA.size()==1) AA=" "+AA; else if (AA.size()==2) AA=" " +AA; else if (AA.size()>=4) continue; if (atom_opt=="auto") { if (AA[0]==' ' && (AA[1]=='D'||AA[1]==' ')) // DNA || RNA select_atom=(atom==" C3'"); else select_atom=(atom==" CA "); } else select_atom=(atom==atom_opt); if (!select_atom) continue; if (_atom_site.count("auth_asym_id")) asym_id=line_vec[_atom_site["auth_asym_id"]]; else asym_id=line_vec[_atom_site["label_asym_id"]]; if (asym_id==".") asym_id=" "; if (_atom_site.count("pdbx_PDB_model_num") && model_index!=line_vec[_atom_site["pdbx_PDB_model_num"]]) { model_index=line_vec[_atom_site["pdbx_PDB_model_num"]]; if (PDB_lines.size() && ter_opt>=1) break; if (PDB_lines.size()==0 || split_opt>=1) { PDB_lines.push_back(tmp_str_vec); mol_vec.push_back(0); prev_asym_id=asym_id; if (split_opt==1 && ter_opt==0) chainID_list.push_back( ':'+model_index); else if (split_opt==2 && ter_opt==0) chainID_list.push_back(':'+model_index+','+asym_id); else //if (split_opt==2 && ter_opt==1) chainID_list.push_back(':'+asym_id); //else //chainID_list.push_back(""); } } if (prev_asym_id!=asym_id) { if (prev_asym_id!="" && ter_opt>=2) break; if (split_opt>=2) { PDB_lines.push_back(tmp_str_vec); mol_vec.push_back(0); if (split_opt==1 && ter_opt==0) chainID_list.push_back( ':'+model_index); else if (split_opt==2 && ter_opt==0) chainID_list.push_back(':'+model_index+','+asym_id); else //if (split_opt==2 && ter_opt==1) chainID_list.push_back(':'+asym_id); //else //chainID_list.push_back(""); } } if (prev_asym_id!=asym_id) prev_asym_id=asym_id; if (AA[0]==' ' && (AA[1]=='D'||AA[1]==' ')) mol_vec.back()++; else mol_vec.back()--; if (_atom_site.count("auth_seq_id")) resi=line_vec[_atom_site["auth_seq_id"]]; else resi=line_vec[_atom_site["label_seq_id"]]; if (_atom_site.count("pdbx_PDB_ins_code") && line_vec[_atom_site["pdbx_PDB_ins_code"]]!="?") resi+=line_vec[_atom_site["pdbx_PDB_ins_code"]][0]; else resi+=" "; if (prev_resi==resi) cerr<<"Warning! Duplicated residue "<=1, only read the first sequence. * if ter_opt ==0, read all sequences. * if split_opt >=1 and ter_opt ==0, each sequence is a separate entry. * if split_opt ==0 and ter_opt ==0, all sequences are combined into one */ size_t get_FASTA_lines(const string filename, vector >&FASTA_lines, vector &chainID_list, vector &mol_vec, const int ter_opt=3, const int split_opt=0) { string line; vector tmp_str_vec; size_t l; int compress_type=0; // uncompressed file ifstream fin; redi::ipstream fin_gz; // if file is compressed if (filename.size()>=3 && filename.substr(filename.size()-3,3)==".gz") { fin_gz.open("zcat '"+filename+"'"); compress_type=1; } else if (filename.size()>=4 && filename.substr(filename.size()-4,4)==".bz2") { fin_gz.open("bzcat '"+filename+"'"); compress_type=2; } else fin.open(filename.c_str()); while (compress_type?fin_gz.good():fin.good()) { if (compress_type) getline(fin_gz, line); else getline(fin, line); if (line.size()==0 || line[0]=='#') continue; if (line[0]=='>') { if (FASTA_lines.size()) { if (ter_opt) break; if (split_opt==0) continue; } FASTA_lines.push_back(tmp_str_vec); FASTA_lines.back().push_back(""); mol_vec.push_back(0); if (ter_opt==0 && split_opt) { line[0]=':'; chainID_list.push_back(line); } else chainID_list.push_back(""); } else { FASTA_lines.back()[0]+=line; for (l=0;l &sequence, char *seqx, char *seqy, const vector resi_vec1, const vector resi_vec2, const int byresi_opt) { sequence.clear(); sequence.push_back(""); sequence.push_back(""); int i1=0; // positions in resi_vec1 int i2=0; // positions in resi_vec2 int xlen=resi_vec1.size(); int ylen=resi_vec2.size(); map chainID_map1; map chainID_map2; if (byresi_opt==3) { vector chainID_vec; string chainID; stringstream ss; int i; for (i=0;i().swap(chainID_vec); } string chainID1=""; string chainID2=""; string chainID1_prev=""; string chainID2_prev=""; while(i1 atoi(resi_vec2[i2].substr(0,4).c_str())) { sequence[0]+='-'; sequence[1]+=seqy[i2++]; } else { sequence[0]+=seqx[i1++]; sequence[1]+=seqy[i2++]; } chainID1_prev=chainID1; chainID2_prev=chainID2; } else { if (chainID1_prev==chainID1 && chainID2_prev!=chainID2) { sequence[0]+=seqx[i1++]; sequence[1]+='-'; chainID1_prev=chainID1; } else if (chainID1_prev!=chainID1 && chainID2_prev==chainID2) { sequence[0]+='-'; sequence[1]+=seqy[i2++]; chainID2_prev=chainID2; } else { sequence[0]+=seqx[i1++]; sequence[1]+=seqy[i2++]; chainID1_prev=chainID1; chainID2_prev=chainID2; } } } map().swap(chainID_map1); map().swap(chainID_map2); chainID1.clear(); chainID2.clear(); chainID1_prev.clear(); chainID2_prev.clear(); return sequence[0].size(); } int read_PDB(const vector &PDB_lines, double **a, char *seq, vector &resi_vec, const int read_resi) { size_t i; for (i=0;i=2) resi_vec.push_back(PDB_lines[i].substr(22,5)+ PDB_lines[i][21]); if (read_resi==1) resi_vec.push_back(PDB_lines[i].substr(22,5)); } seq[i]='\0'; return i; } double dist(double x[3], double y[3]) { double d1=x[0]-y[0]; double d2=x[1]-y[1]; double d3=x[2]-y[2]; return (d1*d1 + d2*d2 + d3*d3); } double dot(double *a, double *b) { return (a[0] * b[0] + a[1] * b[1] + a[2] * b[2]); } void transform(double t[3], double u[3][3], double *x, double *x1) { x1[0]=t[0]+dot(&u[0][0], x); x1[1]=t[1]+dot(&u[1][0], x); x1[2]=t[2]+dot(&u[2][0], x); } void do_rotation(double **x, double **x1, int len, double t[3], double u[3][3]) { for(int i=0; i= 0 && idxEnd >= 0) result = inputString.substr(idxBegin, idxEnd + 1 - idxBegin); return result; } /* read user specified pairwise alignment from 'fname_lign' to 'sequence'. * This function should only be called by main function, as it will * terminate a program if wrong alignment is given */ void read_user_alignment(vector&sequence, const string &fname_lign, const int i_opt) { if (fname_lign == "") PrintErrorAndQuit("Please provide a file name for option -i!"); // open alignment file int n_p = 0;// number of structures in alignment file string line; ifstream fileIn(fname_lign.c_str()); if (fileIn.is_open()) { while (fileIn.good()) { getline(fileIn, line); if (line.compare(0, 1, ">") == 0)// Flag for a new structure { if (n_p >= 2) break; sequence.push_back(""); n_p++; } else if (n_p > 0 && line!="") sequence.back()+=line; } fileIn.close(); } else PrintErrorAndQuit("ERROR! Alignment file does not exist."); if (n_p < 2) PrintErrorAndQuit("ERROR: Fasta format is wrong, two proteins should be included."); if (sequence[0].size() != sequence[1].size()) PrintErrorAndQuit("ERROR! FASTA file is wrong. The length in alignment should be equal for the two aligned proteins."); if (i_opt==3) { int aligned_resNum=0; for (size_t i=0;i&chain_list, const string &name, const string &dir_opt, const string &suffix_opt) { ifstream fp(name.c_str()); if (! fp.is_open()) PrintErrorAndQuit(("Can not open file: "+name+'\n').c_str()); string line; while (fp.good()) { getline(fp, line); if (! line.size()) continue; chain_list.push_back(dir_opt+Trim(line)+suffix_opt); } fp.close(); line.clear(); } /* These functions implement d0 normalization. The d0 for final TM-score * output is implemented by parameter_set4final. For both RNA alignment * and protein alignment, using d0 set by parameter_set4search yields * slightly better results during initial alignment-superposition iteration. */ void parameter_set4search(const int xlen, const int ylen, double &D0_MIN, double &Lnorm, double &score_d8, double &d0, double &d0_search, double &dcu0) { //parameter initialization for searching: D0_MIN, Lnorm, d0, d0_search, score_d8 D0_MIN=0.5; dcu0=4.25; //update 3.85-->4.25 Lnorm=getmin(xlen, ylen); //normalize TMscore by this in searching if (Lnorm<=19) //update 15-->19 d0=0.168; //update 0.5-->0.168 else d0=(1.24*pow((Lnorm*1.0-15), 1.0/3)-1.8); D0_MIN=d0+0.8; //this should be moved to above d0=D0_MIN; //update: best for search d0_search=d0; if (d0_search>8) d0_search=8; if (d0_search<4.5) d0_search=4.5; score_d8=1.5*pow(Lnorm*1.0, 0.3)+3.5; //remove pairs with dis>d8 during search & final } void parameter_set4final_C3prime(const double len, double &D0_MIN, double &Lnorm, double &d0, double &d0_search) { D0_MIN=0.3; Lnorm=len; //normalize TMscore by this in searching if(Lnorm<=11) d0=0.3; else if(Lnorm>11&&Lnorm<=15) d0=0.4; else if(Lnorm>15&&Lnorm<=19) d0=0.5; else if(Lnorm>19&&Lnorm<=23) d0=0.6; else if(Lnorm>23&&Lnorm<30) d0=0.7; else d0=(0.6*pow((Lnorm*1.0-0.5), 1.0/2)-2.5); d0_search=d0; if (d0_search>8) d0_search=8; if (d0_search<4.5) d0_search=4.5; } void parameter_set4final(const double len, double &D0_MIN, double &Lnorm, double &d0, double &d0_search, const int mol_type) { if (mol_type>0) // RNA { parameter_set4final_C3prime(len, D0_MIN, Lnorm, d0, d0_search); return; } D0_MIN=0.5; Lnorm=len; //normalize TMscore by this in searching if (Lnorm<=21) d0=0.5; else d0=(1.24*pow((Lnorm*1.0-15), 1.0/3)-1.8); if (d08) d0_search=8; if (d0_search<4.5) d0_search=4.5; } void parameter_set4scale(const int len, const double d_s, double &Lnorm, double &d0, double &d0_search) { d0=d_s; Lnorm=len; //normalize TMscore by this in searching d0_search=d0; if (d0_search>8) d0_search=8; if (d0_search<4.5) d0_search=4.5; } /************************************************************************** Implemetation of Kabsch algoritm for finding the best rotation matrix --------------------------------------------------------------------------- x - x(i,m) are coordinates of atom m in set x (input) y - y(i,m) are coordinates of atom m in set y (input) n - n is number of atom pairs (input) mode - 0:calculate rms only (input) 1:calculate u,t only (takes medium) 2:calculate rms,u,t (takes longer) rms - sum of w*(ux+t-y)**2 over all atom pairs (output) u - u(i,j) is rotation matrix for best superposition (output) t - t(i) is translation vector for best superposition (output) **************************************************************************/ bool Kabsch(double **x, double **y, int n, int mode, double *rms, double t[3], double u[3][3]) { int i, j, m, m1, l, k; double e0, rms1, d, h, g; double cth, sth, sqrth, p, det, sigma; double xc[3], yc[3]; double a[3][3], b[3][3], r[3][3], e[3], rr[6], ss[6]; double sqrt3 = 1.73205080756888, tol = 0.01; int ip[] = { 0, 1, 3, 1, 2, 4, 3, 4, 5 }; int ip2312[] = { 1, 2, 0, 1 }; int a_failed = 0, b_failed = 0; double epsilon = 0.00000001; //initialization *rms = 0; rms1 = 0; e0 = 0; double c1[3], c2[3]; double s1[3], s2[3]; double sx[3], sy[3], sz[3]; for (i = 0; i < 3; i++) { s1[i] = 0.0; s2[i] = 0.0; sx[i] = 0.0; sy[i] = 0.0; sz[i] = 0.0; } for (i = 0; i<3; i++) { xc[i] = 0.0; yc[i] = 0.0; t[i] = 0.0; for (j = 0; j<3; j++) { u[i][j] = 0.0; r[i][j] = 0.0; a[i][j] = 0.0; if (i == j) { u[i][j] = 1.0; a[i][j] = 1.0; } } } if (n<1) return false; //compute centers for vector sets x, y for (i = 0; i0) { d = spur*spur; h = d - cof; g = (spur*cof - det) / 2.0 - spur*h; if (h>0) { sqrth = sqrt(h); d = h*h*h - g*g; if (d<0.0) d = 0.0; d = atan2(sqrt(d), -g) / 3.0; cth = sqrth * cos(d); sth = sqrth*sqrt3*sin(d); e[0] = (spur + cth) + cth; e[1] = (spur - cth) + sth; e[2] = (spur - cth) - sth; if (mode != 0) {//compute a for (l = 0; l<3; l = l + 2) { d = e[l]; ss[0] = (d - rr[2]) * (d - rr[5]) - rr[4] * rr[4]; ss[1] = (d - rr[5]) * rr[1] + rr[3] * rr[4]; ss[2] = (d - rr[0]) * (d - rr[5]) - rr[3] * rr[3]; ss[3] = (d - rr[2]) * rr[3] + rr[1] * rr[4]; ss[4] = (d - rr[0]) * rr[4] + rr[1] * rr[3]; ss[5] = (d - rr[0]) * (d - rr[2]) - rr[1] * rr[1]; if (fabs(ss[0]) <= epsilon) ss[0] = 0.0; if (fabs(ss[1]) <= epsilon) ss[1] = 0.0; if (fabs(ss[2]) <= epsilon) ss[2] = 0.0; if (fabs(ss[3]) <= epsilon) ss[3] = 0.0; if (fabs(ss[4]) <= epsilon) ss[4] = 0.0; if (fabs(ss[5]) <= epsilon) ss[5] = 0.0; if (fabs(ss[0]) >= fabs(ss[2])) { j = 0; if (fabs(ss[0]) < fabs(ss[5])) j = 2; } else if (fabs(ss[2]) >= fabs(ss[5])) j = 1; else j = 2; d = 0.0; j = 3 * j; for (i = 0; i<3; i++) { k = ip[i + j]; a[i][l] = ss[k]; d = d + ss[k] * ss[k]; } //if( d > 0.0 ) d = 1.0 / sqrt(d); if (d > epsilon) d = 1.0 / sqrt(d); else d = 0.0; for (i = 0; i<3; i++) a[i][l] = a[i][l] * d; }//for l d = a[0][0] * a[0][2] + a[1][0] * a[1][2] + a[2][0] * a[2][2]; if ((e[0] - e[1]) >(e[1] - e[2])) { m1 = 2; m = 0; } else { m1 = 0; m = 2; } p = 0; for (i = 0; i<3; i++) { a[i][m1] = a[i][m1] - d*a[i][m]; p = p + a[i][m1] * a[i][m1]; } if (p <= tol) { p = 1.0; for (i = 0; i<3; i++) { if (p < fabs(a[i][m])) continue; p = fabs(a[i][m]); j = i; } k = ip2312[j]; l = ip2312[j + 1]; p = sqrt(a[k][m] * a[k][m] + a[l][m] * a[l][m]); if (p > tol) { a[j][m1] = 0.0; a[k][m1] = -a[l][m] / p; a[l][m1] = a[k][m] / p; } else a_failed = 1; }//if p<=tol else { p = 1.0 / sqrt(p); for (i = 0; i<3; i++) a[i][m1] = a[i][m1] * p; }//else p<=tol if (a_failed != 1) { a[0][1] = a[1][2] * a[2][0] - a[1][0] * a[2][2]; a[1][1] = a[2][2] * a[0][0] - a[2][0] * a[0][2]; a[2][1] = a[0][2] * a[1][0] - a[0][0] * a[1][2]; } }//if(mode!=0) }//h>0 //compute b anyway if (mode != 0 && a_failed != 1)//a is computed correctly { //compute b for (l = 0; l<2; l++) { d = 0.0; for (i = 0; i<3; i++) { b[i][l] = r[i][0] * a[0][l] + r[i][1] * a[1][l] + r[i][2] * a[2][l]; d = d + b[i][l] * b[i][l]; } //if( d > 0 ) d = 1.0 / sqrt(d); if (d > epsilon) d = 1.0 / sqrt(d); else d = 0.0; for (i = 0; i<3; i++) b[i][l] = b[i][l] * d; } d = b[0][0] * b[0][1] + b[1][0] * b[1][1] + b[2][0] * b[2][1]; p = 0.0; for (i = 0; i<3; i++) { b[i][1] = b[i][1] - d*b[i][0]; p += b[i][1] * b[i][1]; } if (p <= tol) { p = 1.0; for (i = 0; i<3; i++) { if (p tol) { b[j][1] = 0.0; b[k][1] = -b[l][0] / p; b[l][1] = b[k][0] / p; } else b_failed = 1; }//if( p <= tol ) else { p = 1.0 / sqrt(p); for (i = 0; i<3; i++) b[i][1] = b[i][1] * p; } if (b_failed != 1) { b[0][2] = b[1][0] * b[2][1] - b[1][1] * b[2][0]; b[1][2] = b[2][0] * b[0][1] - b[2][1] * b[0][0]; b[2][2] = b[0][0] * b[1][1] - b[0][1] * b[1][0]; //compute u for (i = 0; i<3; i++) for (j = 0; j<3; j++) u[i][j] = b[i][0] * a[j][0] + b[i][1] * a[j][1] + b[i][2] * a[j][2]; } //compute t for (i = 0; i<3; i++) t[i] = ((yc[i] - u[i][0] * xc[0]) - u[i][1] * xc[1]) - u[i][2] * xc[2]; }//if(mode!=0 && a_failed!=1) }//spur>0 else //just compute t and errors { //compute t for (i = 0; i<3; i++) t[i] = ((yc[i] - u[i][0] * xc[0]) - u[i][1] * xc[1]) - u[i][2] * xc[2]; }//else spur>0 //compute rms for (i = 0; i<3; i++) { if (e[i] < 0) e[i] = 0; e[i] = sqrt(e[i]); } d = e[2]; if (sigma < 0.0) d = -d; d = (d + e[1]) + e[0]; if (mode == 2 || mode == 0) { rms1 = (e0 - d) - d; if (rms1 < 0.0) rms1 = 0.0; } *rms = rms1; return true; } /* Partial implementation of Needleman-Wunsch (NW) dynamic programming for * global alignment. The three NWDP_TM functions below are not complete * implementation of NW algorithm because gap jumping in the standard Gotoh * algorithm is not considered. Since the gap opening and gap extension is * the same, this is not a problem. This code was exploited in TM-align * because it is about 1.5 times faster than a complete NW implementation. * Nevertheless, if gap opening != gap extension shall be implemented in * the future, the Gotoh algorithm must be implemented. In rare scenarios, * it is also possible to have asymmetric alignment (i.e. * TMalign A.pdb B.pdb and TMalign B.pdb A.pdb have different TM_A and TM_B * values) caused by the NWPD_TM implement. */ /* Input: score[1:len1, 1:len2], and gap_open * Output: j2i[1:len2] \in {1:len1} U {-1} * path[0:len1, 0:len2]=1,2,3, from diagonal, horizontal, vertical */ void NWDP_TM(double **score, bool **path, double **val, int len1, int len2, double gap_open, int j2i[]) { int i, j; double h, v, d; //initialization for(i=0; i<=len1; i++) { val[i][0]=0; //val[i][0]=i*gap_open; path[i][0]=false; //not from diagonal } for(j=0; j<=len2; j++) { val[0][j]=0; //val[0][j]=j*gap_open; path[0][j]=false; //not from diagonal j2i[j]=-1; //all are not aligned, only use j2i[1:len2] } //decide matrix and path for(i=1; i<=len1; i++) { for(j=1; j<=len2; j++) { d=val[i-1][j-1]+score[i][j]; //diagonal //symbol insertion in horizontal (= a gap in vertical) h=val[i-1][j]; if(path[i-1][j]) h += gap_open; //aligned in last position //symbol insertion in vertical v=val[i][j-1]; if(path[i][j-1]) v += gap_open; //aligned in last position if(d>=h && d>=v) { path[i][j]=true; //from diagonal val[i][j]=d; } else { path[i][j]=false; //from horizontal if(v>=h) val[i][j]=v; else val[i][j]=h; } } //for i } //for j //trace back to extract the alignment i=len1; j=len2; while(i>0 && j>0) { if(path[i][j]) //from diagonal { j2i[j-1]=i-1; i--; j--; } else { h=val[i-1][j]; if(path[i-1][j]) h +=gap_open; v=val[i][j-1]; if(path[i][j-1]) v +=gap_open; if(v>=h) j--; else i--; } } } /* Input: vectors x, y, rotation matrix t, u, scale factor d02, and gap_open * Output: j2i[1:len2] \in {1:len1} U {-1} * path[0:len1, 0:len2]=1,2,3, from diagonal, horizontal, vertical */ void NWDP_TM(bool **path, double **val, double **x, double **y, int len1, int len2, double t[3], double u[3][3], double d02, double gap_open, int j2i[]) { int i, j; double h, v, d; //initialization. use old val[i][0] and val[0][j] initialization //to minimize difference from TMalign fortran version for(i=0; i<=len1; i++) { val[i][0]=0; //val[i][0]=i*gap_open; path[i][0]=false; //not from diagonal } for(j=0; j<=len2; j++) { val[0][j]=0; //val[0][j]=j*gap_open; path[0][j]=false; //not from diagonal j2i[j]=-1; //all are not aligned, only use j2i[1:len2] } double xx[3], dij; //decide matrix and path for(i=1; i<=len1; i++) { transform(t, u, &x[i-1][0], xx); for(j=1; j<=len2; j++) { dij=dist(xx, &y[j-1][0]); d=val[i-1][j-1] + 1.0/(1+dij/d02); //symbol insertion in horizontal (= a gap in vertical) h=val[i-1][j]; if(path[i-1][j]) h += gap_open; //aligned in last position //symbol insertion in vertical v=val[i][j-1]; if(path[i][j-1]) v += gap_open; //aligned in last position if(d>=h && d>=v) { path[i][j]=true; //from diagonal val[i][j]=d; } else { path[i][j]=false; //from horizontal if(v>=h) val[i][j]=v; else val[i][j]=h; } } //for i } //for j //trace back to extract the alignment i=len1; j=len2; while(i>0 && j>0) { if(path[i][j]) //from diagonal { j2i[j-1]=i-1; i--; j--; } else { h=val[i-1][j]; if(path[i-1][j]) h +=gap_open; v=val[i][j-1]; if(path[i][j-1]) v +=gap_open; if(v>=h) j--; else i--; } } } /* This is the same as the previous NWDP_TM, except for the lack of rotation * Input: vectors x, y, scale factor d02, and gap_open * Output: j2i[1:len2] \in {1:len1} U {-1} * path[0:len1, 0:len2]=1,2,3, from diagonal, horizontal, vertical */ void NWDP_SE(bool **path, double **val, double **x, double **y, int len1, int len2, double d02, double gap_open, int j2i[]) { int i, j; double h, v, d; for(i=0; i<=len1; i++) { val[i][0]=0; path[i][0]=false; //not from diagonal } for(j=0; j<=len2; j++) { val[0][j]=0; path[0][j]=false; //not from diagonal j2i[j]=-1; //all are not aligned, only use j2i[1:len2] } double dij; //decide matrix and path for(i=1; i<=len1; i++) { for(j=1; j<=len2; j++) { dij=dist(&x[i-1][0], &y[j-1][0]); d=val[i-1][j-1] + 1.0/(1+dij/d02); //symbol insertion in horizontal (= a gap in vertical) h=val[i-1][j]; if(path[i-1][j]) h += gap_open; //aligned in last position //symbol insertion in vertical v=val[i][j-1]; if(path[i][j-1]) v += gap_open; //aligned in last position if(d>=h && d>=v) { path[i][j]=true; //from diagonal val[i][j]=d; } else { path[i][j]=false; //from horizontal if(v>=h) val[i][j]=v; else val[i][j]=h; } } //for i } //for j //trace back to extract the alignment i=len1; j=len2; while(i>0 && j>0) { if(path[i][j]) //from diagonal { j2i[j-1]=i-1; i--; j--; } else { h=val[i-1][j]; if(path[i-1][j]) h +=gap_open; v=val[i][j-1]; if(path[i][j-1]) v +=gap_open; if(v>=h) j--; else i--; } } } /* +ss * Input: secondary structure secx, secy, and gap_open * Output: j2i[1:len2] \in {1:len1} U {-1} * path[0:len1, 0:len2]=1,2,3, from diagonal, horizontal, vertical */ void NWDP_TM(bool **path, double **val, const char *secx, const char *secy, const int len1, const int len2, const double gap_open, int j2i[]) { int i, j; double h, v, d; //initialization for(i=0; i<=len1; i++) { val[i][0]=0; //val[i][0]=i*gap_open; path[i][0]=false; //not from diagonal } for(j=0; j<=len2; j++) { val[0][j]=0; //val[0][j]=j*gap_open; path[0][j]=false; //not from diagonal j2i[j]=-1; //all are not aligned, only use j2i[1:len2] } //decide matrix and path for(i=1; i<=len1; i++) { for(j=1; j<=len2; j++) { d=val[i-1][j-1] + 1.0*(secx[i-1]==secy[j-1]); //symbol insertion in horizontal (= a gap in vertical) h=val[i-1][j]; if(path[i-1][j]) h += gap_open; //aligned in last position //symbol insertion in vertical v=val[i][j-1]; if(path[i][j-1]) v += gap_open; //aligned in last position if(d>=h && d>=v) { path[i][j]=true; //from diagonal val[i][j]=d; } else { path[i][j]=false; //from horizontal if(v>=h) val[i][j]=v; else val[i][j]=h; } } //for i } //for j //trace back to extract the alignment i=len1; j=len2; while(i>0 && j>0) { if(path[i][j]) //from diagonal { j2i[j-1]=i-1; i--; j--; } else { h=val[i-1][j]; if(path[i-1][j]) h +=gap_open; v=val[i][j-1]; if(path[i][j-1]) v +=gap_open; if(v>=h) j--; else i--; } } } /* Functions for the core TMalign algorithm, including the entry function * TMalign_main */ // 1, collect those residues with dis3) { inc++; double dinc=(d+inc*0.5); d_tmp = dinc * dinc; } else break; } *score1=score_sum/Lnorm; return n_cut; } int score_fun8_standard(double **xa, double **ya, int n_ali, double d, int i_ali[], double *score1, int score_sum_method, double score_d8, double d0) { double score_sum = 0, di; double d_tmp = d*d; double d02 = d0*d0; double score_d8_cut = score_d8*score_d8; int i, n_cut, inc = 0; while (1) { n_cut = 0; score_sum = 0; for (i = 0; i3) { inc++; double dinc = (d + inc*0.5); d_tmp = dinc * dinc; } else break; } *score1 = score_sum / n_ali; return n_cut; } double TMscore8_search(double **r1, double **r2, double **xtm, double **ytm, double **xt, int Lali, double t0[3], double u0[3][3], int simplify_step, int score_sum_method, double *Rcomm, double local_d0_search, double Lnorm, double score_d8, double d0) { int i, m; double score_max, score, rmsd; const int kmax=Lali; int k_ali[kmax], ka, k; double t[3]; double u[3][3]; double d; //iterative parameters int n_it=20; //maximum number of iterations int n_init_max=6; //maximum number of different fragment length int L_ini[n_init_max]; //fragment lengths, Lali, Lali/2, Lali/4 ... 4 int L_ini_min=4; if(Laliscore_max) { score_max=score; //save the rotation matrix for(k=0; k<3; k++) { t0[k]=t[k]; u0[k][0]=u[k][0]; u0[k][1]=u[k][1]; u0[k][2]=u[k][2]; } } //try to extend the alignment iteratively d = local_d0_search + 1; for(int it=0; itscore_max) { score_max=score; //save the rotation matrix for(k=0; k<3; k++) { t0[k]=t[k]; u0[k][0]=u[k][0]; u0[k][1]=u[k][1]; u0[k][2]=u[k][2]; } } //check if it converges if(n_cut==ka) { for(k=0; kiL_max) i=iL_max; //do this to use the last missed fragment } else if(i>=iL_max) break; }//while(1) //end of one fragment }//for(i_init return score_max; } double TMscore8_search_standard( double **r1, double **r2, double **xtm, double **ytm, double **xt, int Lali, double t0[3], double u0[3][3], int simplify_step, int score_sum_method, double *Rcomm, double local_d0_search, double score_d8, double d0) { int i, m; double score_max, score, rmsd; const int kmax = Lali; int k_ali[kmax], ka, k; double t[3]; double u[3][3]; double d; //iterative parameters int n_it = 20; //maximum number of iterations int n_init_max = 6; //maximum number of different fragment length int L_ini[n_init_max]; //fragment lengths, Lali, Lali/2, Lali/4 ... 4 int L_ini_min = 4; if (Laliscore_max) { score_max = score; //save the rotation matrix for (k = 0; k<3; k++) { t0[k] = t[k]; u0[k][0] = u[k][0]; u0[k][1] = u[k][1]; u0[k][2] = u[k][2]; } } //try to extend the alignment iteratively d = local_d0_search + 1; for (int it = 0; itscore_max) { score_max = score; //save the rotation matrix for (k = 0; k<3; k++) { t0[k] = t[k]; u0[k][0] = u[k][0]; u0[k][1] = u[k][1]; u0[k][2] = u[k][2]; } } //check if it converges if (n_cut == ka) { for (k = 0; kiL_max) i = iL_max; //do this to use the last missed fragment } else if (i >= iL_max) break; }//while(1) //end of one fragment }//for(i_init return score_max; } //Comprehensive TMscore search engine // input: two vector sets: x, y // an alignment invmap0[] between x and y // simplify_step: 1 or 40 or other integers // score_sum_method: 0 for score over all pairs // 8 for socre over the pairs with dist=0) //aligned { xtm[k][0]=x[j][0]; xtm[k][1]=x[j][1]; xtm[k][2]=x[j][2]; ytm[k][0]=y[i][0]; ytm[k][1]=y[i][1]; ytm[k][2]=y[i][2]; k++; } } //detailed search 40-->1 tmscore = TMscore8_search(r1, r2, xtm, ytm, xt, k, t, u, simplify_step, score_sum_method, &rmsd, local_d0_search, Lnorm, score_d8, d0); return tmscore; } double detailed_search_standard( double **r1, double **r2, double **xtm, double **ytm, double **xt, double **x, double **y, int xlen, int ylen, int invmap0[], double t[3], double u[3][3], int simplify_step, int score_sum_method, double local_d0_search, const bool& bNormalize, double Lnorm, double score_d8, double d0) { //x is model, y is template, try to superpose onto y int i, j, k; double tmscore; double rmsd; k=0; for(i=0; i=0) //aligned { xtm[k][0]=x[j][0]; xtm[k][1]=x[j][1]; xtm[k][2]=x[j][2]; ytm[k][0]=y[i][0]; ytm[k][1]=y[i][1]; ytm[k][2]=y[i][2]; k++; } } //detailed search 40-->1 tmscore = TMscore8_search_standard( r1, r2, xtm, ytm, xt, k, t, u, simplify_step, score_sum_method, &rmsd, local_d0_search, score_d8, d0); if (bNormalize)// "-i", to use standard_TMscore, then bNormalize=true, else bNormalize=false; tmscore = tmscore * k / Lnorm; return tmscore; } //compute the score quickly in three iterations double get_score_fast( double **r1, double **r2, double **xtm, double **ytm, double **x, double **y, int xlen, int ylen, int invmap[], double d0, double d0_search, double t[3], double u[3][3]) { double rms, tmscore, tmscore1, tmscore2; int i, j, k; k=0; for(j=0; j=0) { r1[k][0]=x[i][0]; r1[k][1]=x[i][1]; r1[k][2]=x[i][2]; r2[k][0]=y[j][0]; r2[k][1]=y[j][1]; r2[k][2]=y[j][2]; xtm[k][0]=x[i][0]; xtm[k][1]=x[i][1]; xtm[k][2]=x[i][2]; ytm[k][0]=y[j][0]; ytm[k][1]=y[j][1]; ytm[k][2]=y[j][2]; k++; } else if(i!=-1) PrintErrorAndQuit("Wrong map!\n"); } Kabsch(r1, r2, k, 1, &rms, t, u); //evaluate score double di; const int len=k; double dis[len]; double d00=d0_search; double d002=d00*d00; double d02=d0*d0; int n_ali=k; double xrot[3]; tmscore=0; for(k=0; k3) d002t += 0.5; else break; } if(n_ali!=j) { Kabsch(r1, r2, j, 1, &rms, t, u); tmscore1=0; for(k=0; k3) d002t += 0.5; else break; } //evaluate the score Kabsch(r1, r2, j, 1, &rms, t, u); tmscore2=0; for(k=0; k=tmscore) tmscore=tmscore1; if(tmscore2>=tmscore) tmscore=tmscore2; return tmscore; // no need to normalize this score because it will not be used for latter scoring } //perform gapless threading to find the best initial alignment //input: x, y, xlen, ylen //output: y2x0 stores the best alignment: e.g., //y2x0[j]=i means: //the jth element in y is aligned to the ith element in x if i>=0 //the jth element in y is aligned to a gap in x if i==-1 double get_initial(double **r1, double **r2, double **xtm, double **ytm, double **x, double **y, int xlen, int ylen, int *y2x, double d0, double d0_search, const bool fast_opt, double t[3], double u[3][3]) { int min_len=getmin(xlen, ylen); if(min_len<3) PrintErrorAndQuit("Sequence is too short <3!\n"); int min_ali= min_len/2; //minimum size of considered fragment if(min_ali<=5) min_ali=5; int n1, n2; n1 = -ylen+min_ali; n2 = xlen-min_ali; int i, j, k, k_best; double tmscore, tmscore_max=-1; k_best=n1; for(k=n1; k<=n2; k+=(fast_opt)?5:1) { //get the map for(j=0; j=0 && i=tmscore_max) { tmscore_max=tmscore; k_best=k; } } //extract the best map k=k_best; for(j=0; j=0 && i ----- for (i=2; i ------ for (i=0; icoil, 2->helix, 3->turn, 4->strand */ void make_sec(double **x, int len, char *sec) { int j1, j2, j3, j4, j5; double d13, d14, d15, d24, d25, d35; for(int i=0; i=0 && j5=a1&&a2<=c1)||(c2>=a1&&c2<=c1)|| (d2>=a1&&d2<=c1)||(b2>=a1&&b2<=c1)|| (a2>=d1&&a2<=b1)||(c2>=d1&&c2<=b1)|| (d2>=d1&&d2<=b1)||(b2>=d1&&b2<=b1); } /* find base pairing stacks in RNA*/ void sec_str(int len,char *seq, const vector >&bp, int a, int b,int &c, int &d) { int i; for (i=0;i0) { if (a+iunpair, 2->paired with upstream, 3->paired with downstream */ void make_sec(char *seq, double **x, int len, char *sec,const string atom_opt) { int ii,jj,i,j; float lb=12.5; // lower bound for " C3'" float ub=15.0; // upper bound for " C3'" if (atom_opt==" C4'") {lb=14.0;ub=16.0;} else if(atom_opt==" C5'") {lb=16.0;ub=18.0;} else if(atom_opt==" O3'") {lb=13.5;ub=16.5;} else if(atom_opt==" O5'") {lb=15.5;ub=18.5;} else if(atom_opt==" P ") {lb=16.5;ub=21.0;} float dis; vector bp_tmp(len,false); vector > bp(len,bp_tmp); bp_tmp.clear(); for (i=0; ilb && dis A0,B0,C0,D0; for (i=0; i0 && j+1=A0[i]&&A0[j]<=C0[i])|| (C0[j]>=A0[i]&&C0[j]<=C0[i])|| (D0[j]>=A0[i]&&D0[j]<=C0[i])|| (B0[j]>=A0[i]&&B0[j]<=C0[i])|| (A0[j]>=D0[i]&&A0[j]<=B0[i])|| (C0[j]>=D0[i]&&C0[j]<=B0[i])|| (D0[j]>=D0[i]&&D0[j]<=B0[i])|| (B0[j]>=D0[i]&&B0[j]<=B0[i])) { sign=-1; break; } } } if(sign!=0) continue; */ for (j=0;;j++) { if(A0[i]+j>C0[i]) break; sec[A0[i]+j]='<'; sec[D0[i]+j]='>'; } } sec[len]=0; /* clean up */ A0.clear(); B0.clear(); C0.clear(); D0.clear(); bp.clear(); } //get initial alignment from secondary structure alignment //input: x, y, xlen, ylen //output: y2x stores the best alignment: e.g., //y2x[j]=i means: //the jth element in y is aligned to the ith element in x if i>=0 //the jth element in y is aligned to a gap in x if i==-1 void get_initial_ss(bool **path, double **val, const char *secx, const char *secy, int xlen, int ylen, int *y2x) { double gap_open=-1.0; NWDP_TM(path, val, secx, secy, xlen, ylen, gap_open, y2x); } // get_initial5 in TMalign fortran, get_initial_local in TMalign c by yangji //get initial alignment of local structure superposition //input: x, y, xlen, ylen //output: y2x stores the best alignment: e.g., //y2x[j]=i means: //the jth element in y is aligned to the ith element in x if i>=0 //the jth element in y is aligned to a gap in x if i==-1 bool get_initial5( double **r1, double **r2, double **xtm, double **ytm, bool **path, double **val, double **x, double **y, int xlen, int ylen, int *y2x, double d0, double d0_search, const bool fast_opt, const double D0_MIN) { double GL, rmsd; double t[3]; double u[3][3]; double d01 = d0 + 1.5; if (d01 < D0_MIN) d01 = D0_MIN; double d02 = d01*d01; double GLmax = 0; int aL = getmin(xlen, ylen); int *invmap = new int[ylen + 1]; // jump on sequence1--------------> int n_jump1 = 0; if (xlen > 250) n_jump1 = 45; else if (xlen > 200) n_jump1 = 35; else if (xlen > 150) n_jump1 = 25; else n_jump1 = 15; if (n_jump1 > (xlen / 3)) n_jump1 = xlen / 3; // jump on sequence2--------------> int n_jump2 = 0; if (ylen > 250) n_jump2 = 45; else if (ylen > 200) n_jump2 = 35; else if (ylen > 150) n_jump2 = 25; else n_jump2 = 15; if (n_jump2 > (ylen / 3)) n_jump2 = ylen / 3; // fragment to superimpose--------------> int n_frag[2] = { 20, 100 }; if (n_frag[0] > (aL / 3)) n_frag[0] = aL / 3; if (n_frag[1] > (aL / 2)) n_frag[1] = aL / 2; // start superimpose search--------------> if (fast_opt) { n_jump1*=5; n_jump2*=5; } bool flag = false; for (int i_frag = 0; i_frag < 2; i_frag++) { int m1 = xlen - n_frag[i_frag] + 1; int m2 = ylen - n_frag[i_frag] + 1; for (int i = 0; iGLmax) { GLmax = GL; for (int ii = 0; ii=0) { r1[k][0]=x[i][0]; r1[k][1]=x[i][1]; r1[k][2]=x[i][2]; r2[k][0]=y[j][0]; r2[k][1]=y[j][1]; r2[k][2]=y[j][2]; k++; } } Kabsch(r1, r2, k, 1, &rmsd, t, u); for(int ii=0; ii=0 //the jth element in y is aligned to a gap in x if i==-1 void get_initial_ssplus(double **r1, double **r2, double **score, bool **path, double **val, const char *secx, const char *secy, double **x, double **y, int xlen, int ylen, int *y2x0, int *y2x, const double D0_MIN, double d0) { //create score matrix for DP score_matrix_rmsd_sec(r1, r2, score, secx, secy, x, y, xlen, ylen, y2x0, D0_MIN,d0); double gap_open=-1.0; NWDP_TM(score, path, val, xlen, ylen, gap_open, y2x); } void find_max_frag(double **x, int len, int *start_max, int *end_max, double dcu0, const bool fast_opt) { int r_min, fra_min=4; //minimum fragment for search if (fast_opt) fra_min=8; int start; int Lfr_max=0; r_min= (int) (len*1.0/3.0); //minimum fragment, in case too small protein if(r_min > fra_min) r_min=fra_min; int inc=0; double dcu0_cut=dcu0*dcu0;; double dcu_cut=dcu0_cut; while(Lfr_max < r_min) { Lfr_max=0; int j=1; //number of residues at nf-fragment start=0; for(int i=1; i Lfr_max) { Lfr_max=j; *start_max=start; *end_max=i; } j=1; } } else { if(j>Lfr_max) { Lfr_max=j; *start_max=start; *end_max=i-1; } j=1; start=i; } }// for i; if(Lfr_max < r_min) { inc++; double dinc=pow(1.1, (double) inc) * dcu0; dcu_cut= dinc*dinc; } }//while <; } //perform fragment gapless threading to find the best initial alignment //input: x, y, xlen, ylen //output: y2x0 stores the best alignment: e.g., //y2x0[j]=i means: //the jth element in y is aligned to the ith element in x if i>=0 //the jth element in y is aligned to a gap in x if i==-1 double get_initial_fgt(double **r1, double **r2, double **xtm, double **ytm, double **x, double **y, int xlen, int ylen, int *y2x, double d0, double d0_search, double dcu0, const bool fast_opt, double t[3], double u[3][3]) { int fra_min=4; //minimum fragment for search if (fast_opt) fra_min=8; int fra_min1=fra_min-1; //cutoff for shift, save time int xstart=0, ystart=0, xend=0, yend=0; find_max_frag(x, xlen, &xstart, &xend, dcu0, fast_opt); find_max_frag(y, ylen, &ystart, ¥d, dcu0, fast_opt); int Lx = xend-xstart+1; int Ly = yend-ystart+1; int *ifr, *y2x_; int L_fr=getmin(Lx, Ly); ifr= new int[L_fr]; y2x_= new int[ylen+1]; //select what piece will be used. The original implement may cause //asymetry, but only when xlen==ylen and Lx==Ly //if L1=Lfr1 and L2=Lfr2 (normal proteins), it will be the same as initial1 if(LxLy || (Lx==Ly && xlen>ylen)) { for(int i=0; i=0 && i=tmscore_max) { tmscore_max=tmscore; for(j=0; j=0 && i=tmscore_max) { tmscore_max=tmscore; for(j=0; j=0 && i=tmscore_max) { tmscore_max=tmscore; for(j=0; j=0 && i=tmscore_max) { tmscore_max=tmscore; for(j=0; j=0) //aligned { xtm[k][0]=x[i][0]; xtm[k][1]=x[i][1]; xtm[k][2]=x[i][2]; ytm[k][0]=y[j][0]; ytm[k][1]=y[j][1]; ytm[k][2]=y[j][2]; k++; } } tmscore = TMscore8_search(r1, r2, xtm, ytm, xt, k, t, u, simplify_step, score_sum_method, &rmsd, local_d0_search, Lnorm, score_d8, d0); if(tmscore>tmscore_max) { tmscore_max=tmscore; for(i=0; i0) { if(fabs(tmscore_old-tmscore)<0.000001) break; } tmscore_old=tmscore; }// for iteration }//for gapopen delete []invmap; return tmscore_max; } void output_superpose(const string filename, const char *fname_super, double t[3], double u[3][3], const int ter_opt, const int mirror_opt) { int compress_type=0; // uncompressed file ifstream fin; redi::ipstream fin_gz; // if file is compressed if (filename.size()>=3 && filename.substr(filename.size()-3,3)==".gz") { fin_gz.open("zcat "+filename); compress_type=1; } else if (filename.size()>=4 && filename.substr(filename.size()-4,4)==".bz2") { fin_gz.open("bzcat "+filename); compress_type=2; } else fin.open(filename.c_str()); stringstream buf; string line; double x[3]; // before transform double x1[3]; // after transform /* for PDBx/mmCIF only */ map _atom_site; int atom_site_pos; vector line_vec; while (compress_type?fin_gz.good():fin.good()) { if (compress_type) getline(fin_gz, line); else getline(fin, line); if (line.compare(0, 6, "ATOM ")==0 || line.compare(0, 6, "HETATM")==0) // PDB format { x[0]=atof(line.substr(30,8).c_str()); x[1]=atof(line.substr(38,8).c_str()); x[2]=atof(line.substr(46,8).c_str()); if (mirror_opt) x[2]=-x[2]; transform(t, u, x, x1); buf<=1 && line.compare(0,3,"END")==0) break; } } if (compress_type) fin_gz.close(); else fin.close(); ofstream fp(fname_super); fp<&resi_vec1, const vector&resi_vec2, const string chainID1, const string chainID2) { int compress_type=0; // uncompressed file ifstream fin; redi::ipstream fin_gz; // if file is compressed if (xname.size()>=3 && xname.substr(xname.size()-3,3)==".gz") { fin_gz.open("zcat "+xname); compress_type=1; } else if (xname.size()>=4 && xname.substr(xname.size()-4,4)==".bz2") { fin_gz.open("bzcat "+xname); compress_type=2; } else fin.open(xname.c_str()); stringstream buf; stringstream buf_pymol; string line; double x[3]; // before transform double x1[3]; // after transform /* for PDBx/mmCIF only */ map _atom_site; size_t atom_site_pos; vector line_vec; int infmt=-1; // 0 - PDB, 3 - PDBx/mmCIF while (compress_type?fin_gz.good():fin.good()) { if (compress_type) getline(fin_gz, line); else getline(fin, line); if (line.compare(0, 6, "ATOM ")==0 || line.compare(0, 6, "HETATM")==0) // PDB format { infmt=0; x[0]=atof(line.substr(30,8).c_str()); x[1]=atof(line.substr(38,8).c_str()); x[2]=atof(line.substr(46,8).c_str()); if (mirror_opt) x[2]=-x[2]; transform(t, u, x, x1); buf<=1 && line.compare(0,3,"END")==0) break; } } if (compress_type) fin_gz.close(); else fin.close(); string fname_super_full=fname_super; if (infmt==0) fname_super_full+=".pdb"; else if (infmt==3) fname_super_full+=".cif"; ofstream fp; fp.open(fname_super_full.c_str()); fp<=1) // align one chain from model 1 { chain1_sele=" and c. "+chainID1.substr(1); chain2_sele=" and c. "+chainID2.substr(1); } else if (split_opt==2 && ter_opt==0) // align one chain from each model { for (i=1;i pml_list; pml_list.push_back(fname_super+""); pml_list.push_back(fname_super+"_atm"); pml_list.push_back(fname_super+"_all"); pml_list.push_back(fname_super+"_all_atm"); pml_list.push_back(fname_super+"_all_atm_lig"); for (int p=0;p&resi_vec1, const vector&resi_vec2, const string chainID1, const string chainID2, const int xlen, const int ylen, const double d0A, const int n_ali8, const double rmsd, const double TM1, const double Liden) { stringstream buf; stringstream buf_all; stringstream buf_atm; stringstream buf_all_atm; stringstream buf_all_atm_lig; //stringstream buf_pdb; stringstream buf_tm; string line; double x[3]; // before transform double x1[3]; // after transform bool after_ter; // true if passed the "TER" line in PDB string asym_id; // chain ID buf_tm<<"REMARK US-align" <<"\nREMARK Structure 1:"<=1) // align one chain from model 1 { chain1_sele=chainID1.substr(1); chain2_sele=chainID2.substr(1); } else if (split_opt==2 && ter_opt==0) // align one chain from each model { for (i=1;i _atom_site; int atom_site_pos; vector line_vec; string atom; // 4-character atom name string AA; // 3-character residue name string resi; // 4-character residue sequence number string inscode; // 1-character insertion code string model_index; // model index bool is_mmcif=false; /* used for CONECT record of chain1 */ int ca_idx1=0; // all CA atoms int lig_idx1=0; // all atoms vector idx_vec; /* used for CONECT record of chain2 */ int ca_idx2=0; // all CA atoms int lig_idx2=0; // all atoms /* extract aligned region */ vector resi_aln1; vector resi_aln2; int i1=-1; int i2=-1; if (!mm_opt) { for (i=0;i=3 && line.compare(0,3,"TER")==0) after_ter=true; if (is_mmcif==false && line.size()>=54 && (line.compare(0, 6, "ATOM ")==0 || line.compare(0, 6, "HETATM")==0)) // PDB format { if (line[16]!='A' && line[16]!=' ') continue; x[0]=atof(line.substr(30,8).c_str()); x[1]=atof(line.substr(38,8).c_str()); x[2]=atof(line.substr(46,8).c_str()); if (mirror_opt) x[2]=-x[2]; transform(t, u, x, x1); //buf_pdb<=2) { if (ca_idx1 && asym_id.size() && asym_id!=line.substr(21,1)) { after_ter=true; continue; } asym_id=line[21]; } buf_all_atm<<"ATOM "<=5) atom=atom.substr(0,4); AA=line_vec[_atom_site["label_comp_id"]]; // residue name if (AA.size()==1) AA=" "+AA; else if (AA.size()==2) AA=" " +AA; else if (AA.size()>=4) AA=AA.substr(0,3); if (_atom_site.count("auth_seq_id")) resi=line_vec[_atom_site["auth_seq_id"]]; else resi=line_vec[_atom_site["label_seq_id"]]; while (resi.size()<4) resi=' '+resi; if (resi.size()>4) resi=resi.substr(0,4); inscode=' '; if (_atom_site.count("pdbx_PDB_ins_code") && line_vec[_atom_site["pdbx_PDB_ins_code"]]!="?") inscode=line_vec[_atom_site["pdbx_PDB_ins_code"]][0]; if (_atom_site.count("auth_asym_id")) { if (chain1_sele.size()) after_ter =line_vec[_atom_site["auth_asym_id"]]!=chain1_sele; else if (ter_opt>=2 && ca_idx1 && asym_id.size() && asym_id!=line_vec[_atom_site["auth_asym_id"]]) after_ter=true; asym_id=line_vec[_atom_site["auth_asym_id"]]; } else if (_atom_site.count("label_asym_id")) { if (chain1_sele.size()) after_ter =line_vec[_atom_site["label_asym_id"]]!=chain1_sele; if (ter_opt>=2 && ca_idx1 && asym_id.size() && asym_id!=line_vec[_atom_site["label_asym_id"]]) after_ter=true; asym_id=line_vec[_atom_site["label_asym_id"]]; } //buf_pdb<=1 && line.compare(0,3,"END")==0) break; } } fin.close(); if (!mm_opt) buf<<"TER\n"; buf_all<<"TER\n"; if (!mm_opt) buf_atm<<"TER\n"; buf_all_atm<<"TER\n"; buf_all_atm_lig<<"TER\n"; for (i=1;i=3 && line.compare(0,3,"TER")==0) after_ter=true; if (line.size()>=54 && (line.compare(0, 6, "ATOM ")==0 || line.compare(0, 6, "HETATM")==0)) // PDB format { if (line[16]!='A' && line[16]!=' ') continue; if (after_ter && line.compare(0,6,"ATOM ")==0) continue; lig_idx2++; buf_all_atm_lig<=2) { if (ca_idx2 && asym_id.size() && asym_id!=line.substr(21,1)) { after_ter=true; continue; } asym_id=line[21]; } buf_all_atm<<"ATOM "<=5) atom=atom.substr(0,4); AA=line_vec[_atom_site["label_comp_id"]]; // residue name if (AA.size()==1) AA=" "+AA; else if (AA.size()==2) AA=" " +AA; else if (AA.size()>=4) AA=AA.substr(0,3); if (_atom_site.count("auth_seq_id")) resi=line_vec[_atom_site["auth_seq_id"]]; else resi=line_vec[_atom_site["label_seq_id"]]; while (resi.size()<4) resi=' '+resi; if (resi.size()>4) resi=resi.substr(0,4); inscode=' '; if (_atom_site.count("pdbx_PDB_ins_code") && line_vec[_atom_site["pdbx_PDB_ins_code"]]!="?") inscode=line_vec[_atom_site["pdbx_PDB_ins_code"]][0]; if (_atom_site.count("auth_asym_id")) { if (chain2_sele.size()) after_ter =line_vec[_atom_site["auth_asym_id"]]!=chain2_sele; if (ter_opt>=2 && ca_idx2 && asym_id.size() && asym_id!=line_vec[_atom_site["auth_asym_id"]]) after_ter=true; asym_id=line_vec[_atom_site["auth_asym_id"]]; } else if (_atom_site.count("label_asym_id")) { if (chain2_sele.size()) after_ter =line_vec[_atom_site["label_asym_id"]]!=chain2_sele; if (ter_opt>=2 && ca_idx2 && asym_id.size() && asym_id!=line_vec[_atom_site["label_asym_id"]]) after_ter=true; asym_id=line_vec[_atom_site["label_asym_id"]]; } if (after_ter==false || line_vec[_atom_site["group_PDB"]]=="HETATM") { lig_idx2++; buf_all_atm_lig<=1 && line.compare(0,3,"END")==0) break; } } fin.close(); if (!mm_opt) buf<<"TER\n"; buf_all<<"TER\n"; if (!mm_opt) buf_atm<<"TER\n"; buf_all_atm<<"TER\n"; buf_all_atm_lig<<"TER\n"; for (i=ca_idx1+1;i pml_list; pml_list.push_back(fname_super+""); pml_list.push_back(fname_super+"_atm"); pml_list.push_back(fname_super+"_all"); pml_list.push_back(fname_super+"_all_atm"); pml_list.push_back(fname_super+"_all_atm_lig"); for (i=0;i&resi_vec1, const vector&resi_vec2) { if (outfmt_opt<=0) { printf("\nName of Structure_1: %s%s (to be superimposed onto Structure_2)\n", xname.c_str(), chainID1.c_str()); printf("Name of Structure_2: %s%s\n", yname.c_str(), chainID2.c_str()); printf("Length of Structure_1: %d residues\n", xlen); printf("Length of Structure_2: %d residues\n\n", ylen); if (i_opt) printf("User-specified initial alignment: TM/Lali/rmsd = %7.5lf, %4d, %6.3lf\n", TM_ali, L_ali, rmsd_ali); printf("Aligned length= %d, RMSD= %6.2f, Seq_ID=n_identical/n_aligned= %4.3f\n", n_ali8, rmsd, (n_ali8>0)?Liden/n_ali8:0); printf("TM-score= %6.5f (normalized by length of Structure_1: L=%d, d0=%.2f)\n", TM2, xlen, d0B); printf("TM-score= %6.5f (normalized by length of Structure_2: L=%d, d0=%.2f)\n", TM1, ylen, d0A); if (a_opt==1) printf("TM-score= %6.5f (if normalized by average length of two structures: L=%.1f, d0=%.2f)\n", TM3, (xlen+ylen)*0.5, d0a); if (u_opt) printf("TM-score= %6.5f (normalized by user-specified L=%.2f and d0=%.2f)\n", TM4, Lnorm_ass, d0u); if (d_opt) printf("TM-score= %6.5f (scaled by user-specified d0=%.2f, and L=%d)\n", TM5, d0_scale, ylen); printf("(You should use TM-score normalized by length of the reference structure)\n"); //output alignment printf("\n(\":\" denotes residue pairs of d <%4.1f Angstrom, ", d0_out); printf("\".\" denotes other aligned residues)\n"); printf("%s\n", seqxA); printf("%s\n", seqM); printf("%s\n", seqyA); } else if (outfmt_opt==1) { printf(">%s%s\tL=%d\td0=%.2f\tseqID=%.3f\tTM-score=%.5f\n", xname.c_str(), chainID1.c_str(), xlen, d0B, Liden/xlen, TM2); printf("%s\n", seqxA); printf(">%s%s\tL=%d\td0=%.2f\tseqID=%.3f\tTM-score=%.5f\n", yname.c_str(), chainID2.c_str(), ylen, d0A, Liden/ylen, TM1); printf("%s\n", seqyA); printf("# Lali=%d\tRMSD=%.2f\tseqID_ali=%.3f\n", n_ali8, rmsd, (n_ali8>0)?Liden/n_ali8:0); if (i_opt) printf("# User-specified initial alignment: TM=%.5lf\tLali=%4d\trmsd=%.3lf\n", TM_ali, L_ali, rmsd_ali); if(a_opt) printf("# TM-score=%.5f (normalized by average length of two structures: L=%.1f\td0=%.2f)\n", TM3, (xlen+ylen)*0.5, d0a); if(u_opt) printf("# TM-score=%.5f (normalized by user-specified L=%.2f\td0=%.2f)\n", TM4, Lnorm_ass, d0u); if(d_opt) printf("# TM-score=%.5f (scaled by user-specified d0=%.2f\tL=%d)\n", TM5, d0_scale, ylen); printf("$$$$\n"); } else if (outfmt_opt==2) { printf("%s%s\t%s%s\t%.4f\t%.4f\t%.2f\t%4.3f\t%4.3f\t%4.3f\t%d\t%d\t%d", xname.c_str(), chainID1.c_str(), yname.c_str(), chainID2.c_str(), TM2, TM1, rmsd, Liden/xlen, Liden/ylen, (n_ali8>0)?Liden/n_ali8:0, xlen, ylen, n_ali8); } cout << endl; if (strlen(fname_matrix)) output_rotation_matrix(fname_matrix, t, u); if (fname_super.size()) output_superpose(xname, fname_super.c_str(), t, u, ter_opt, mirror_opt); //if (o_opt==1) //output_pymol(xname, yname, fname_super, t, u, ter_opt, //mm_opt, split_opt, mirror_opt, seqM, seqxA, seqyA, //resi_vec1, resi_vec2, chainID1, chainID2); //else if (o_opt==2) //output_rasmol(xname, yname, fname_super, t, u, ter_opt, //mm_opt, split_opt, mirror_opt, seqM, seqxA, seqyA, //resi_vec1, resi_vec2, chainID1, chainID2, //xlen, ylen, d0A, n_ali8, rmsd, TM1, Liden); } double standard_TMscore(double **r1, double **r2, double **xtm, double **ytm, double **xt, double **x, double **y, int xlen, int ylen, int invmap[], int& L_ali, double& RMSD, double D0_MIN, double Lnorm, double d0, double d0_search, double score_d8, double t[3], double u[3][3], const int mol_type) { D0_MIN = 0.5; Lnorm = ylen; if (mol_type>0) // RNA { if (Lnorm<=11) d0=0.3; else if(Lnorm>11 && Lnorm<=15) d0=0.4; else if(Lnorm>15 && Lnorm<=19) d0=0.5; else if(Lnorm>19 && Lnorm<=23) d0=0.6; else if(Lnorm>23 && Lnorm<30) d0=0.7; else d0=(0.6*pow((Lnorm*1.0-0.5), 1.0/2)-2.5); } else { if (Lnorm > 21) d0=(1.24*pow((Lnorm*1.0-15), 1.0/3) -1.8); else d0 = D0_MIN; if (d0 < D0_MIN) d0 = D0_MIN; } double d0_input = d0;// Scaled by seq_min double tmscore;// collected alined residues from invmap int n_al = 0; int i; for (int j = 0; j= 0) { xtm[n_al][0] = x[i][0]; xtm[n_al][1] = x[i][1]; xtm[n_al][2] = x[i][2]; ytm[n_al][0] = y[j][0]; ytm[n_al][1] = y[j][1]; ytm[n_al][2] = y[j][2]; r1[n_al][0] = x[i][0]; r1[n_al][1] = x[i][1]; r1[n_al][2] = x[i][2]; r2[n_al][0] = y[j][0]; r2[n_al][1] = y[j][1]; r2[n_al][2] = y[j][2]; n_al++; } else if (i != -1) PrintErrorAndQuit("Wrong map!\n"); } L_ali = n_al; Kabsch(r1, r2, n_al, 0, &RMSD, t, u); RMSD = sqrt( RMSD/(1.0*n_al) ); int temp_simplify_step = 1; int temp_score_sum_method = 0; d0_search = d0_input; double rms = 0.0; tmscore = TMscore8_search_standard(r1, r2, xtm, ytm, xt, n_al, t, u, temp_simplify_step, temp_score_sum_method, &rms, d0_input, score_d8, d0); tmscore = tmscore * n_al / (1.0*Lnorm); return tmscore; } /* copy the value of t and u into t0,u0 */ void copy_t_u(double t[3], double u[3][3], double t0[3], double u0[3][3]) { int i,j; for (i=0;i<3;i++) { t0[i]=t[i]; for (j=0;j<3;j++) u0[i][j]=u[i][j]; } } /* calculate approximate TM-score given rotation matrix */ double approx_TM(const int xlen, const int ylen, const int a_opt, double **xa, double **ya, double t[3], double u[3][3], const int invmap0[], const int mol_type) { double Lnorm_0=ylen; // normalized by the second protein if (a_opt==-2 && xlen>ylen) Lnorm_0=xlen; // longer else if (a_opt==-1 && xlen=0)//aligned { transform(t, u, &xa[i][0], &xtmp[0]); d=sqrt(dist(&xtmp[0], &ya[j][0])); TMtmp+=1/(1+(d/d0)*(d/d0)); //if (d <= score_d8) TMtmp+=1/(1+(d/d0)*(d/d0)); } } TMtmp/=Lnorm_0; return TMtmp; } void clean_up_after_approx_TM(int *invmap0, int *invmap, double **score, bool **path, double **val, double **xtm, double **ytm, double **xt, double **r1, double **r2, const int xlen, const int minlen) { delete [] invmap0; delete [] invmap; DeleteArray(&score, xlen+1); DeleteArray(&path, xlen+1); DeleteArray(&val, xlen+1); DeleteArray(&xtm, minlen); DeleteArray(&ytm, minlen); DeleteArray(&xt, xlen); DeleteArray(&r1, minlen); DeleteArray(&r2, minlen); return; } /* Entry function for TM-align. Return TM-score calculation status: * 0 - full TM-score calculation * 1 - terminated due to exception * 2-7 - pre-terminated due to low TM-score */ int TMalign_main(double **xa, double **ya, const char *seqx, const char *seqy, const char *secx, const char *secy, double t0[3], double u0[3][3], double &TM1, double &TM2, double &TM3, double &TM4, double &TM5, double &d0_0, double &TM_0, double &d0A, double &d0B, double &d0u, double &d0a, double &d0_out, string &seqM, string &seqxA, string &seqyA, double &rmsd0, int &L_ali, double &Liden, double &TM_ali, double &rmsd_ali, int &n_ali, int &n_ali8, const int xlen, const int ylen, const vector sequence, const double Lnorm_ass, const double d0_scale, const int i_opt, const int a_opt, const bool u_opt, const bool d_opt, const bool fast_opt, const int mol_type, const double TMcut=-1) { double D0_MIN; //for d0 double Lnorm; //normalization length double score_d8,d0,d0_search,dcu0;//for TMscore search double t[3], u[3][3]; //Kabsch translation vector and rotation matrix double **score; // Input score table for dynamic programming bool **path; // for dynamic programming double **val; // for dynamic programming double **xtm, **ytm; // for TMscore search engine double **xt; //for saving the superposed version of r_1 or xtm double **r1, **r2; // for Kabsch rotation /***********************/ /* allocate memory */ /***********************/ int minlen = min(xlen, ylen); NewArray(&score, xlen+1, ylen+1); NewArray(&path, xlen+1, ylen+1); NewArray(&val, xlen+1, ylen+1); NewArray(&xtm, minlen, 3); NewArray(&ytm, minlen, 3); NewArray(&xt, xlen, 3); NewArray(&r1, minlen, 3); NewArray(&r2, minlen, 3); /***********************/ /* parameter set */ /***********************/ parameter_set4search(xlen, ylen, D0_MIN, Lnorm, score_d8, d0, d0_search, dcu0); int simplify_step = 40; //for simplified search engine int score_sum_method = 8; //for scoring method, whether only sum over pairs with dis= ylen || i1 >= xlen) kk1 = L; else if (sequence[0][kk1] != '-') invmap[i2] = i1; } } //--------------- 2. Align proteins from original alignment double prevD0_MIN = D0_MIN;// stored for later use int prevLnorm = Lnorm; double prevd0 = d0; TM_ali = standard_TMscore(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap, L_ali, rmsd_ali, D0_MIN, Lnorm, d0, d0_search, score_d8, t, u, mol_type); D0_MIN = prevD0_MIN; Lnorm = prevLnorm; d0 = prevd0; TM = detailed_search_standard(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap, t, u, 40, 8, local_d0_search, true, Lnorm, score_d8, d0); if (TM > TMmax) { TMmax = TM; for (i = 0; iTMmax) TMmax = TM; if (TMcut>0) copy_t_u(t, u, t0, u0); //run dynamic programing iteratively to find the best alignment TM = DP_iter(r1, r2, xtm, ytm, xt, path, val, xa, ya, xlen, ylen, t, u, invmap, 0, 2, (fast_opt)?2:30, local_d0_search, D0_MIN, Lnorm, d0, score_d8); if (TM>TMmax) { TMmax = TM; for (int i = 0; i0) copy_t_u(t, u, t0, u0); } if (TMcut>0) // pre-terminate if TM-score is too low { double TMtmp=approx_TM(xlen, ylen, a_opt, xa, ya, t0, u0, invmap0, mol_type); if (TMtmp<0.5*TMcut) { TM1=TM2=TM3=TM4=TM5=TMtmp; clean_up_after_approx_TM(invmap0, invmap, score, path, val, xtm, ytm, xt, r1, r2, xlen, minlen); return 2; } } /************************************************************/ /* get initial alignment based on secondary structure */ /************************************************************/ get_initial_ss(path, val, secx, secy, xlen, ylen, invmap); TM = detailed_search(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap, t, u, simplify_step, score_sum_method, local_d0_search, Lnorm, score_d8, d0); if (TM>TMmax) { TMmax = TM; for (int i = 0; i0) copy_t_u(t, u, t0, u0); } if (TM > TMmax*0.2) { TM = DP_iter(r1, r2, xtm, ytm, xt, path, val, xa, ya, xlen, ylen, t, u, invmap, 0, 2, (fast_opt)?2:30, local_d0_search, D0_MIN, Lnorm, d0, score_d8); if (TM>TMmax) { TMmax = TM; for (int i = 0; i0) copy_t_u(t, u, t0, u0); } } if (TMcut>0) // pre-terminate if TM-score is too low { double TMtmp=approx_TM(xlen, ylen, a_opt, xa, ya, t0, u0, invmap0, mol_type); if (TMtmp<0.52*TMcut) { TM1=TM2=TM3=TM4=TM5=TMtmp; clean_up_after_approx_TM(invmap0, invmap, score, path, val, xtm, ytm, xt, r1, r2, xlen, minlen); return 3; } } /************************************************************/ /* get initial alignment based on local superposition */ /************************************************************/ //=initial5 in original TM-align if (get_initial5( r1, r2, xtm, ytm, path, val, xa, ya, xlen, ylen, invmap, d0, d0_search, fast_opt, D0_MIN)) { TM = detailed_search(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap, t, u, simplify_step, score_sum_method, local_d0_search, Lnorm, score_d8, d0); if (TM>TMmax) { TMmax = TM; for (int i = 0; i0) copy_t_u(t, u, t0, u0); } if (TM > TMmax*ddcc) { TM = DP_iter(r1, r2, xtm, ytm, xt, path, val, xa, ya, xlen, ylen, t, u, invmap, 0, 2, 2, local_d0_search, D0_MIN, Lnorm, d0, score_d8); if (TM>TMmax) { TMmax = TM; for (int i = 0; i0) copy_t_u(t, u, t0, u0); } } } else cerr << "\n\nWarning: initial alignment from local superposition fail!\n\n" << endl; if (TMcut>0) // pre-terminate if TM-score is too low { double TMtmp=approx_TM(xlen, ylen, a_opt, xa, ya, t0, u0, invmap0, mol_type); if (TMtmp<0.54*TMcut) { TM1=TM2=TM3=TM4=TM5=TMtmp; clean_up_after_approx_TM(invmap0, invmap, score, path, val, xtm, ytm, xt, r1, r2, xlen, minlen); return 4; } } /********************************************************************/ /* get initial alignment by local superposition+secondary structure */ /********************************************************************/ //=initial3 in original TM-align get_initial_ssplus(r1, r2, score, path, val, secx, secy, xa, ya, xlen, ylen, invmap0, invmap, D0_MIN, d0); TM = detailed_search(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap, t, u, simplify_step, score_sum_method, local_d0_search, Lnorm, score_d8, d0); if (TM>TMmax) { TMmax = TM; for (i = 0; i0) copy_t_u(t, u, t0, u0); } if (TM > TMmax*ddcc) { TM = DP_iter(r1, r2, xtm, ytm, xt, path, val, xa, ya, xlen, ylen, t, u, invmap, 0, 2, (fast_opt)?2:30, local_d0_search, D0_MIN, Lnorm, d0, score_d8); if (TM>TMmax) { TMmax = TM; for (i = 0; i0) copy_t_u(t, u, t0, u0); } } if (TMcut>0) // pre-terminate if TM-score is too low { double TMtmp=approx_TM(xlen, ylen, a_opt, xa, ya, t0, u0, invmap0, mol_type); if (TMtmp<0.56*TMcut) { TM1=TM2=TM3=TM4=TM5=TMtmp; clean_up_after_approx_TM(invmap0, invmap, score, path, val, xtm, ytm, xt, r1, r2, xlen, minlen); return 5; } } /*******************************************************************/ /* get initial alignment based on fragment gapless threading */ /*******************************************************************/ //=initial4 in original TM-align get_initial_fgt(r1, r2, xtm, ytm, xa, ya, xlen, ylen, invmap, d0, d0_search, dcu0, fast_opt, t, u); TM = detailed_search(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap, t, u, simplify_step, score_sum_method, local_d0_search, Lnorm, score_d8, d0); if (TM>TMmax) { TMmax = TM; for (i = 0; i0) copy_t_u(t, u, t0, u0); } if (TM > TMmax*ddcc) { TM = DP_iter(r1, r2, xtm, ytm, xt, path, val, xa, ya, xlen, ylen, t, u, invmap, 1, 2, 2, local_d0_search, D0_MIN, Lnorm, d0, score_d8); if (TM>TMmax) { TMmax = TM; for (i = 0; i0) copy_t_u(t, u, t0, u0); } } if (TMcut>0) // pre-terminate if TM-score is too low { double TMtmp=approx_TM(xlen, ylen, a_opt, xa, ya, t0, u0, invmap0, mol_type); if (TMtmp<0.58*TMcut) { TM1=TM2=TM3=TM4=TM5=TMtmp; clean_up_after_approx_TM(invmap0, invmap, score, path, val, xtm, ytm, xt, r1, r2, xlen, minlen); return 6; } } //************************************************// // get initial alignment from user's input: // //************************************************// if (i_opt==1)// if input has set parameter for "-i" { for (int j = 0; j < ylen; j++)// Set aligned position to be "-1" invmap[j] = -1; int i1 = -1;// in C version, index starts from zero, not from one int i2 = -1; int L1 = sequence[0].size(); int L2 = sequence[1].size(); int L = min(L1, L2);// Get positions for aligned residues for (int kk1 = 0; kk1 < L; kk1++) { if (sequence[0][kk1] != '-') i1++; if (sequence[1][kk1] != '-') { i2++; if (i2 >= ylen || i1 >= xlen) kk1 = L; else if (sequence[0][kk1] != '-') invmap[i2] = i1; } } //--------------- 2. Align proteins from original alignment double prevD0_MIN = D0_MIN;// stored for later use int prevLnorm = Lnorm; double prevd0 = d0; TM_ali = standard_TMscore(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap, L_ali, rmsd_ali, D0_MIN, Lnorm, d0, d0_search, score_d8, t, u, mol_type); D0_MIN = prevD0_MIN; Lnorm = prevLnorm; d0 = prevd0; TM = detailed_search_standard(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap, t, u, 40, 8, local_d0_search, true, Lnorm, score_d8, d0); if (TM > TMmax) { TMmax = TM; for (i = 0; iTMmax) { TMmax = TM; for (i = 0; i=0) { flag=true; break; } } if(!flag) { cout << "There is no alignment between the two proteins! " << "Program stop with no result!" << endl; TM1=TM2=TM3=TM4=TM5=0; return 1; } /* last TM-score pre-termination */ if (TMcut>0) { double TMtmp=approx_TM(xlen, ylen, a_opt, xa, ya, t0, u0, invmap0, mol_type); if (TMtmp<0.6*TMcut) { TM1=TM2=TM3=TM4=TM5=TMtmp; clean_up_after_approx_TM(invmap0, invmap, score, path, val, xtm, ytm, xt, r1, r2, xlen, minlen); return 7; } } //********************************************************************// // Detailed TMscore search engine --> prepare for final TMscore // //********************************************************************// //run detailed TMscore search engine for the best alignment, and //extract the best rotation matrix (t, u) for the best alignment simplify_step=1; if (fast_opt) simplify_step=40; score_sum_method=8; TM = detailed_search_standard(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap0, t, u, simplify_step, score_sum_method, local_d0_search, false, Lnorm, score_d8, d0); //select pairs with dis=0)//aligned { n_ali++; d=sqrt(dist(&xt[i][0], &ya[j][0])); if (d <= score_d8 || (i_opt == 3)) { m1[k]=i; m2[k]=j; xtm[k][0]=xa[i][0]; xtm[k][1]=xa[i][1]; xtm[k][2]=xa[i][2]; ytm[k][0]=ya[j][0]; ytm[k][1]=ya[j][1]; ytm[k][2]=ya[j][2]; r1[k][0] = xt[i][0]; r1[k][1] = xt[i][1]; r1[k][2] = xt[i][2]; r2[k][0] = ya[j][0]; r2[k][1] = ya[j][1]; r2[k][2] = ya[j][2]; k++; } } } n_ali8=k; Kabsch(r1, r2, n_ali8, 0, &rmsd0, t, u);// rmsd0 is used for final output, only recalculate rmsd0, not t & u rmsd0 = sqrt(rmsd0 / n_ali8); //****************************************// // Final TMscore // // Please set parameters for output // //****************************************// double rmsd; simplify_step=1; score_sum_method=0; double Lnorm_0=ylen; //normalized by length of structure A parameter_set4final(Lnorm_0, D0_MIN, Lnorm, d0, d0_search, mol_type); d0A=d0; d0_0=d0A; local_d0_search = d0_search; TM1 = TMscore8_search(r1, r2, xtm, ytm, xt, n_ali8, t0, u0, simplify_step, score_sum_method, &rmsd, local_d0_search, Lnorm, score_d8, d0); TM_0 = TM1; //normalized by length of structure B parameter_set4final(xlen+0.0, D0_MIN, Lnorm, d0, d0_search, mol_type); d0B=d0; local_d0_search = d0_search; TM2 = TMscore8_search(r1, r2, xtm, ytm, xt, n_ali8, t, u, simplify_step, score_sum_method, &rmsd, local_d0_search, Lnorm, score_d8, d0); double Lnorm_d0; if (a_opt>0) { //normalized by average length of structures A, B Lnorm_0=(xlen+ylen)*0.5; parameter_set4final(Lnorm_0, D0_MIN, Lnorm, d0, d0_search, mol_type); d0a=d0; d0_0=d0a; local_d0_search = d0_search; TM3 = TMscore8_search(r1, r2, xtm, ytm, xt, n_ali8, t0, u0, simplify_step, score_sum_method, &rmsd, local_d0_search, Lnorm, score_d8, d0); TM_0=TM3; } if (u_opt) { //normalized by user assigned length parameter_set4final(Lnorm_ass, D0_MIN, Lnorm, d0, d0_search, mol_type); d0u=d0; d0_0=d0u; Lnorm_0=Lnorm_ass; local_d0_search = d0_search; TM4 = TMscore8_search(r1, r2, xtm, ytm, xt, n_ali8, t0, u0, simplify_step, score_sum_method, &rmsd, local_d0_search, Lnorm, score_d8, d0); TM_0=TM4; } if (d_opt) { //scaled by user assigned d0 parameter_set4scale(ylen, d0_scale, Lnorm, d0, d0_search); d0_out=d0_scale; d0_0=d0_scale; //Lnorm_0=ylen; Lnorm_d0=Lnorm_0; local_d0_search = d0_search; TM5 = TMscore8_search(r1, r2, xtm, ytm, xt, n_ali8, t0, u0, simplify_step, score_sum_method, &rmsd, local_d0_search, Lnorm, score_d8, d0); TM_0=TM5; } /* derive alignment from superposition */ int ali_len=xlen+ylen; //maximum length of alignment seqxA.assign(ali_len,'-'); seqM.assign( ali_len,' '); seqyA.assign(ali_len,'-'); //do_rotation(xa, xt, xlen, t, u); do_rotation(xa, xt, xlen, t0, u0); int kk=0, i_old=0, j_old=0; d=0; Liden=0; for(int k=0; k sequence, const double Lnorm_ass, const double d0_scale, const int i_opt, const int a_opt, const bool u_opt, const bool d_opt, const bool fast_opt, const int mol_type, const double TMcut=-1) { char *seqx_cp; // for the protein sequence char *secx_cp; // for the secondary structure double **xa_cp; // coordinates string seqxA_cp,seqyA_cp; // alignment int i,r; int cp_point=0; // position of circular permutation int cp_aln_best=0; // amount of aligned residue in sliding window int cp_aln_current;// amount of aligned residue in sliding window /* duplicate structure */ NewArray(&xa_cp, xlen*2, 3); seqx_cp = new char[xlen*2 + 1]; secx_cp = new char[xlen*2 + 1]; for (r=0;rcp_aln_best) { cp_aln_best=cp_aln_current; cp_point=r; } } seqM.clear(); seqxA.clear(); seqyA.clear(); seqxA_cp.clear(); seqyA_cp.clear(); rmsd0=Liden=n_ali=n_ali8=0; /* fTM-align alignment */ TMalign_main(xa, ya, seqx, seqy, secx, secy, t0, u0, TM1, TM2, TM3, TM4, TM5, d0_0, TM_0, d0A, d0B, d0u, d0a, d0_out, seqM, seqxA, seqyA, rmsd0, L_ali, Liden, TM_ali, rmsd_ali, n_ali, n_ali8, xlen, ylen, sequence, Lnorm_tmp, d0_scale, 0, false, true, false, true, mol_type, -1); /* do not use circular permutation of number of aligned residues is not * larger than sequence-order dependent alignment */ //cout<<"cp: aln="<=0) assign1_tmp[old_i]=old_j; assign2_tmp[j]=i; if (old_j>=0) assign2_tmp[old_j]=old_i; delta_score=TMave_mat[i][j]; if (old_j>=0) delta_score-=TMave_mat[i][old_j]; if (old_i>=0) delta_score-=TMave_mat[old_i][j]; if (old_i>=0 && old_j>=0) delta_score+=TMave_mat[old_i][old_j]; if (delta_score>0) // successful swap { assign1_list[i]=j; if (old_i>=0) assign1_list[old_i]=old_j; assign2_list[j]=i; if (old_j>=0) assign2_list[old_j]=old_i; total_score+=delta_score; break; } else { assign1_tmp[i]=assign1_list[i]; if (old_i>=0) assign1_tmp[old_i]=assign1_list[old_i]; assign2_tmp[j]=assign2_list[j]; if (old_j>=0) assign2_tmp[old_j]=assign2_list[old_j]; } } if (delta_score>0) break; } if (delta_score<=0) break; // cannot swap any chain pair } /* clean up */ delete[]assign1_tmp; delete[]assign2_tmp; return total_score; } double calculate_centroids(const vector > >&a_vec, const int chain_num, double ** centroids) { int L=0; int c,r; // index of chain and residue for (c=0; c d0_vec(chain_num,-1); int c2=0; double d0MM=0; for (c=0; c=3) { /* Kabsch superposition */ Kabsch(r1, r2, Nali, 1, &RMSD, t, u); do_rotation(r1, xt, Nali, t, u); /* calculate pseudo-TMscore */ double dd=0; for (i=0;i > ut_tm_vec(total_pair,make_pair(0.0,0)); // product of both for (c1=0;c1=0;ut_idx--) { j=ut_tm_vec[ut_idx].second % chain2_num; i=int(ut_tm_vec[ut_idx].second / chain2_num); if (TMave_mat[i][j]<=0) break; if (assign1_tmp[i]>=0 || assign2_tmp[j]>=0) continue; assign1_tmp[i]=j; assign2_tmp[j]=i; TMsum+=TMave_mat[i][j]; TMscore+=ut_tmc_mat[i*chain2_num+j]; //cout<<"ut_idx="<MMscore_old) // successful swap { assign1_list[i]=j; if (old_i>=0) assign1_list[old_i]=old_j; assign2_list[j]=i; if (old_j>=0) assign2_list[old_j]=old_i; delta_score=(MMscore-MMscore_old); MMscore_old=MMscore; //cout<<"MMscore="<=0) assign1_tmp[old_i]=assign1_list[old_i]; assign2_tmp[j]=assign2_list[j]; if (old_j>=0) assign2_tmp[old_j]=assign2_list[old_j]; } } } //cout<<"iter="< >&PDB_lines, const int ter_opt, const int infmt_opt, const int split_opt, const int het_opt) { size_t i=0; // resi i.e. atom index string line; char chainID=0; vector tmp_str_vec; int compress_type=0; // uncompressed file ifstream fin; redi::ipstream fin_gz; // if file is compressed if (filename.size()>=3 && filename.substr(filename.size()-3,3)==".gz") { fin_gz.open("zcat '"+filename+"'"); compress_type=1; } else if (filename.size()>=4 && filename.substr(filename.size()-4,4)==".bz2") { fin_gz.open("bzcat '"+filename+"'"); compress_type=2; } else fin.open(filename.c_str()); if (infmt_opt==0||infmt_opt==-1) // PDB format { while (compress_type?fin_gz.good():fin.good()) { if (compress_type) getline(fin_gz, line); else getline(fin, line); if (infmt_opt==-1 && line.compare(0,5,"loop_")==0) // PDBx/mmCIF return get_full_PDB_lines(filename,PDB_lines, ter_opt, 3, split_opt,het_opt); if (i > 0) { if (ter_opt>=1 && line.compare(0,3,"END")==0) break; else if (ter_opt>=3 && line.compare(0,3,"TER")==0) break; } if (split_opt && line.compare(0,3,"END")==0) chainID=0; if (line.size()>=54 && (line[16]==' ' || line[16]=='A') && ( (line.compare(0, 6, "ATOM ")==0) || (line.compare(0, 6, "HETATM")==0 && het_opt==1) || (line.compare(0, 6, "HETATM")==0 && het_opt==2 && line.compare(17,3, "MSE")==0))) { if (!chainID) { chainID=line[21]; PDB_lines.push_back(tmp_str_vec); } else if (ter_opt>=2 && chainID!=line[21]) break; if (split_opt==2 && chainID!=line[21]) { chainID=line[21]; PDB_lines.push_back(tmp_str_vec); } PDB_lines.back().push_back(line); i++; } } } else if (infmt_opt==1) // SPICKER format { size_t L=0; float x,y,z; stringstream i8_stream; while (compress_type?fin_gz.good():fin.good()) { if (compress_type) fin_gz>>L>>x>>y>>z; else fin >>L>>x>>y>>z; if (compress_type) getline(fin_gz, line); else getline(fin, line); if (!(compress_type?fin_gz.good():fin.good())) break; for (i=0;i>x>>y>>z; else fin >>x>>y>>z; i8_stream<<"ATOM "< _atom_site; int atom_site_pos; vector line_vec; string alt_id="."; // alternative location indicator string asym_id="."; // this is similar to chainID, except that // chainID is char while asym_id is a string // with possibly multiple char string prev_asym_id=""; string AA=""; // residue name string atom=""; string resi=""; string model_index=""; // the same as model_idx but type is string stringstream i8_stream; while (compress_type?fin_gz.good():fin.good()) { if (compress_type) getline(fin_gz, line); else getline(fin, line); if (line.size()==0) continue; if (loop_) loop_ = line.compare(0,2,"# "); if (!loop_) { if (line.compare(0,5,"loop_")) continue; while(1) { if (compress_type) { if (fin_gz.good()) getline(fin_gz, line); else PrintErrorAndQuit("ERROR! Unexpected end of "+filename); } else { if (fin.good()) getline(fin, line); else PrintErrorAndQuit("ERROR! Unexpected end of "+filename); } if (line.size()) break; } if (line.compare(0,11,"_atom_site.")) continue; loop_=true; _atom_site.clear(); atom_site_pos=0; _atom_site[line.substr(11,line.size()-12)]=atom_site_pos; while(1) { if (compress_type) getline(fin_gz, line); else getline(fin, line); if (line.size()==0) continue; if (line.compare(0,11,"_atom_site.")) break; _atom_site[line.substr(11,line.size()-12)]=++atom_site_pos; } if (_atom_site.count("group_PDB")* _atom_site.count("label_atom_id")* _atom_site.count("label_comp_id")* (_atom_site.count("auth_asym_id")+ _atom_site.count("label_asym_id"))* (_atom_site.count("auth_seq_id")+ _atom_site.count("label_seq_id"))* _atom_site.count("Cartn_x")* _atom_site.count("Cartn_y")* _atom_site.count("Cartn_z")==0) { loop_ = false; cerr<<"Warning! Missing one of the following _atom_site data items: group_PDB, label_atom_id, label_comp_id, auth_asym_id/label_asym_id, auth_seq_id/label_seq_id, Cartn_x, Cartn_y, Cartn_z"<=5) continue; AA=line_vec[_atom_site["label_comp_id"]]; // residue name if (AA.size()==1) AA=" "+AA; else if (AA.size()==2) AA=" " +AA; else if (AA.size()>=4) continue; if (_atom_site.count("auth_asym_id")) asym_id=line_vec[_atom_site["auth_asym_id"]]; else asym_id=line_vec[_atom_site["label_asym_id"]]; if (asym_id==".") asym_id=" "; if (_atom_site.count("pdbx_PDB_model_num") && model_index!=line_vec[_atom_site["pdbx_PDB_model_num"]]) { model_index=line_vec[_atom_site["pdbx_PDB_model_num"]]; if (PDB_lines.size() && ter_opt>=1) break; if (PDB_lines.size()==0 || split_opt>=1) { PDB_lines.push_back(tmp_str_vec); prev_asym_id=asym_id; } } if (prev_asym_id!=asym_id) { if (prev_asym_id!="" && ter_opt>=2) break; if (split_opt>=2) PDB_lines.push_back(tmp_str_vec); } if (prev_asym_id!=asym_id) prev_asym_id=asym_id; if (_atom_site.count("auth_seq_id")) resi=line_vec[_atom_site["auth_seq_id"]]; else resi=line_vec[_atom_site["label_seq_id"]]; if (_atom_site.count("pdbx_PDB_ins_code") && line_vec[_atom_site["pdbx_PDB_ins_code"]]!="?") resi+=line_vec[_atom_site["pdbx_PDB_ins_code"]][0]; else resi+=" "; i++; i8_stream<<"ATOM " <&chain_list, vector > >&a_vec, vector >&seq_vec, vector >&sec_vec, vector&mol_vec, vector&len_vec, vector&chainID_list, const int ter_opt, const int split_opt, const string mol_opt, const int infmt_opt, const string atom_opt, const int mirror_opt, const int het_opt, int &len_aa, int &len_na, const int o_opt, vector&resi_vec) { size_t i; int chain_i,r; string name; int chainnum; double **xa; int len; char *seq,*sec; vector >PDB_lines; vector tmp_atom_array(3,0); vector > tmp_chain_array; vectortmp_seq_array; vectortmp_sec_array; //vector resi_vec; int read_resi=0; if (o_opt) read_resi=2; for (i=0;i0 || mol_opt=="RNA") make_sec(seq, xa, len, sec,atom_opt); else make_sec(xa, len, sec); // secondary structure assignment /* store in vector */ tmp_chain_array.assign(len,tmp_atom_array); vectortmp_seq_array(len+1,0); vectortmp_sec_array(len+1,0); for (r=0;r='a' && seq_vec[i][r]<='z') mol_vec[i]++; else mol_vec[i]--; } } } len_aa=0; len_na=0; for (i=0;i0) len_na+=len_vec[i]; else len_aa+=len_vec[i]; } } int copy_chain_pair_data( const vector > >&xa_vec, const vector > >&ya_vec, const vector >&seqx_vec, const vector >&seqy_vec, const vector >&secx_vec, const vector >&secy_vec, const vector &mol_vec1, const vector &mol_vec2, const vector &xlen_vec, const vector &ylen_vec, double **xa, double **ya, char *seqx, char *seqy, char *secx, char *secy, int chain1_num, int chain2_num, vector >&seqxA_mat, vector >&seqyA_mat, int *assign1_list, int *assign2_list, vector&sequence) { int i,j,r; for (i=0;i > >&xa_vec, const vector > >&ya_vec, const vector >&seqx_vec, const vector >&seqy_vec, const vector >&secx_vec, const vector >&secy_vec, const vector &mol_vec1, const vector &mol_vec2, const vector &xlen_vec, const vector &ylen_vec, double **xa, double **ya, char *seqx, char *seqy, char *secx, char *secy, int len_aa, int len_na, int chain1_num, int chain2_num, double **TMave_mat, vector >&seqxA_mat, vector >&seqyA_mat, int *assign1_list, int *assign2_list, vector&sequence, double d0_scale, bool fast_opt, const int i_opt=3) { double total_score=0; int i,j; int xlen=0; int ylen=0; for (i=0;i0) Lnorm_ass=len_na; /* entry function for structure alignment */ se_main(xt, ya, seqx, seqy, TM1, TM2, TM3, TM4, TM5, d0_0, TM_0, d0A, d0B, d0u, d0a, d0_out, seqM, seqxA, seqyA, rmsd0, L_ali, Liden, TM_ali, rmsd_ali, n_ali, n_ali8, xlen, ylen, sequence, Lnorm_ass, d0_scale, 0, false, 2, false, mol_vec1[i]+mol_vec2[j], 1, invmap); /* print result */ seqxA_mat[i][j]=seqxA; seqyA_mat[i][j]=seqyA; TMave_mat[i][j]=TM4*Lnorm_ass; if (assign1_list[i]==j) total_score+=TMave_mat[i][j]; /* clean up */ seqM.clear(); seqxA.clear(); seqyA.clear(); delete[]seqy; delete[]secy; DeleteArray(&ya,ylen); delete[]invmap; } delete[]seqx; delete[]secx; DeleteArray(&xa,xlen); DeleteArray(&xt,xlen); } return total_score; } void MMalign_final( const string xname, const string yname, const vector chainID_list1, const vector chainID_list2, string fname_super, string fname_lign, string fname_matrix, const vector > >&xa_vec, const vector > >&ya_vec, const vector >&seqx_vec, const vector >&seqy_vec, const vector >&secx_vec, const vector >&secy_vec, const vector &mol_vec1, const vector &mol_vec2, const vector &xlen_vec, const vector &ylen_vec, double **xa, double **ya, char *seqx, char *seqy, char *secx, char *secy, int len_aa, int len_na, int chain1_num, int chain2_num, double **TMave_mat, vector >&seqxA_mat, vector >&seqM_mat, vector >&seqyA_mat, int *assign1_list, int *assign2_list, vector&sequence, const double d0_scale, const bool m_opt, const int o_opt, const int outfmt_opt, const int ter_opt, const int split_opt, const bool a_opt, const bool d_opt, const bool fast_opt, const bool full_opt, const int mirror_opt, const vector&resi_vec1, const vector&resi_vec2) { int i,j; int xlen=0; int ylen=0; for (i=0;i=0) continue; chainID1+=chainID_list1[i]; chainID2+=':'; string s(seqx_vec[i].begin(),seqx_vec[i].end()); sequence[0]+=s.substr(0,xlen_vec[i])+'*'; sequence[1]+=string(xlen_vec[i],'-')+'*'; s.clear(); sequence[2]+=string(xlen_vec[i],' ')+'*'; } for (j=0;j=0) continue; chainID1+=':'; chainID2+=chainID_list2[j]; string s(seqy_vec[j].begin(),seqy_vec[j].end()); sequence[0]+=string(ylen_vec[j],'-')+'*'; sequence[1]+=s.substr(0,ylen_vec[j])+'*'; s.clear(); sequence[2]+=string(ylen_vec[j],' ')+'*'; } /* print alignment */ output_results(xname, yname, chainID1.c_str(), chainID2.c_str(), xlen, ylen, t0, u0, TM1, TM2, TM3, TM4, TM5, rmsd0, d0_out, sequence[2].c_str(), sequence[0].c_str(), sequence[1].c_str(), Liden, n_ali8, L_ali, TM_ali, rmsd_ali, TM_0, d0_0, d0A, d0B, 0, d0_scale, d0a, d0u, (m_opt?fname_matrix:"").c_str(), outfmt_opt, ter_opt, true, split_opt, o_opt, fname_super, false, a_opt, false, d_opt, mirror_opt, resi_vec1, resi_vec2); /* clean up */ seqM.clear(); seqxA.clear(); seqyA.clear(); delete [] seqx; delete [] seqy; delete [] secx; delete [] secy; DeleteArray(&xa,xlen); DeleteArray(&ya,ylen); sequence[0].clear(); sequence[1].clear(); sequence[2].clear(); if (!full_opt) return; cout<<"# End of alignment for full complex. The following blocks list alignments for individual chains."<0) Lnorm_ass=len_na; sequence[0]=seqxA_mat[i][j]; sequence[1]=seqyA_mat[i][j]; /* entry function for structure alignment */ se_main(xt, ya, seqx, seqy, TM1, TM2, TM3, TM4, TM5, d0_0, TM_0, d0A, d0B, d0u, d0a, d0_out, seqM, seqxA, seqyA, rmsd0, L_ali, Liden, TM_ali, rmsd_ali, n_ali, n_ali8, xlen, ylen, sequence, Lnorm_ass, d0_scale, 1, a_opt, 2, d_opt, mol_vec1[i]+mol_vec2[j], 1, invmap); //TM2=TM4*Lnorm_ass/xlen; //TM1=TM4*Lnorm_ass/ylen; //d0A=d0u; //d0B=d0u; /* print result */ output_results(xname, yname, chainID_list1[i].c_str(), chainID_list2[j].c_str(), xlen, ylen, t0, u0, TM1, TM2, TM3, TM4, TM5, rmsd0, d0_out, seqM_mat[i][j].c_str(), seqxA_mat[i][j].c_str(), seqyA_mat[i][j].c_str(), Liden, n_ali8, L_ali, TM_ali, rmsd_ali, TM_0, d0_0, d0A, d0B, Lnorm_ass, d0_scale, d0a, d0u, "", outfmt_opt, ter_opt, false, split_opt, 0, "", false, a_opt, false, d_opt, 0, resi_vec1, resi_vec2); /* clean up */ seqxA.clear(); seqM.clear(); seqyA.clear(); sequence[0].clear(); sequence[1].clear(); delete[]seqy; delete[]secy; DeleteArray(&ya,ylen); delete[]seqx; delete[]secx; DeleteArray(&xa,xlen); DeleteArray(&xt,xlen); delete[]invmap; } sequence.clear(); return; } void copy_chain_assign_data(int chain1_num, int chain2_num, vector &sequence, vector >&seqxA_mat, vector >&seqyA_mat, int *assign1_list, int *assign2_list, double **TMave_mat, vector >&seqxA_tmp, vector >&seqyA_tmp, int *assign1_tmp, int *assign2_tmp, double **TMave_tmp) { int i,j; for (i=0;i > >&xa_vec, const vector > >&ya_vec, const vector >&seqx_vec, const vector >&seqy_vec, const vector >&secx_vec, const vector >&secy_vec, const vector &mol_vec1, const vector &mol_vec2, const vector &xlen_vec, const vector &ylen_vec, double **xa, double **ya, char *seqx, char *seqy, char *secx, char *secy, int len_aa, int len_na, int chain1_num, int chain2_num, double **TMave_mat, vector >&seqxA_mat, vector >&seqyA_mat, int *assign1_list, int *assign2_list, vector&sequence, double d0_scale, bool fast_opt) { /* tmp assignment */ double total_score; int *assign1_tmp, *assign2_tmp; assign1_tmp=new int[chain1_num]; assign2_tmp=new int[chain2_num]; double **TMave_tmp; NewArray(&TMave_tmp,chain1_num,chain2_num); vector tmp_str_vec(chain2_num,""); vector >seqxA_tmp(chain1_num,tmp_str_vec); vector >seqyA_tmp(chain1_num,tmp_str_vec); vector sequence_tmp; copy_chain_assign_data(chain1_num, chain2_num, sequence_tmp, seqxA_mat, seqyA_mat, assign1_list, assign2_list, TMave_mat, seqxA_tmp, seqyA_tmp, assign1_tmp, assign2_tmp, TMave_tmp); for (int iter=0;iter().swap(tmp_str_vec); vector >().swap(seqxA_tmp); vector >().swap(seqyA_tmp); } /* Input: vectors x, y, rotation matrix t, u, scale factor d02, and gap_open * Output: j2i[1:len2] \in {1:len1} U {-1} * path[0:len1, 0:len2]=1,2,3, from diagonal, horizontal, vertical */ void NWDP_TM_dimer(bool **path, double **val, double **x, double **y, int len1, int len2, bool **mask, double t[3], double u[3][3], double d02, double gap_open, int j2i[]) { int i, j; double h, v, d; //initialization for(i=0; i<=len1; i++) { //val[i][0]=0; val[i][0]=i*gap_open; path[i][0]=false; //not from diagonal } for(j=0; j<=len2; j++) { //val[0][j]=0; val[0][j]=j*gap_open; path[0][j]=false; //not from diagonal j2i[j]=-1; //all are not aligned, only use j2i[1:len2] } double xx[3], dij; //decide matrix and path for(i=1; i<=len1; i++) { transform(t, u, &x[i-1][0], xx); for(j=1; j<=len2; j++) { d=FLT_MIN; if (mask[i][j]) { dij=dist(xx, &y[j-1][0]); d=val[i-1][j-1] + 1.0/(1+dij/d02); } //symbol insertion in horizontal (= a gap in vertical) h=val[i-1][j]; if(path[i-1][j]) h += gap_open; //aligned in last position //symbol insertion in vertical v=val[i][j-1]; if(path[i][j-1]) v += gap_open; //aligned in last position if(d>=h && d>=v) { path[i][j]=true; //from diagonal val[i][j]=d; } else { path[i][j]=false; //from horizontal if(v>=h) val[i][j]=v; else val[i][j]=h; } } //for i } //for j //trace back to extract the alignment i=len1; j=len2; while(i>0 && j>0) { if(path[i][j]) //from diagonal { j2i[j-1]=i-1; i--; j--; } else { h=val[i-1][j]; if(path[i-1][j]) h +=gap_open; v=val[i][j-1]; if(path[i][j-1]) v +=gap_open; if(v>=h) j--; else i--; } } } /* +ss * Input: secondary structure secx, secy, and gap_open * Output: j2i[1:len2] \in {1:len1} U {-1} * path[0:len1, 0:len2]=1,2,3, from diagonal, horizontal, vertical */ void NWDP_TM_dimer(bool **path, double **val, const char *secx, const char *secy, const int len1, const int len2, bool **mask, const double gap_open, int j2i[]) { int i, j; double h, v, d; //initialization for(i=0; i<=len1; i++) { //val[i][0]=0; val[i][0]=i*gap_open; path[i][0]=false; //not from diagonal } for(j=0; j<=len2; j++) { //val[0][j]=0; val[0][j]=j*gap_open; path[0][j]=false; //not from diagonal j2i[j]=-1; //all are not aligned, only use j2i[1:len2] } //decide matrix and path for(i=1; i<=len1; i++) { for(j=1; j<=len2; j++) { d=FLT_MIN; if (mask[i][j]) d=val[i-1][j-1] + 1.0*(secx[i-1]==secy[j-1]); //symbol insertion in horizontal (= a gap in vertical) h=val[i-1][j]; if(path[i-1][j]) h += gap_open; //aligned in last position //symbol insertion in vertical v=val[i][j-1]; if(path[i][j-1]) v += gap_open; //aligned in last position if(d>=h && d>=v) { path[i][j]=true; //from diagonal val[i][j]=d; } else { path[i][j]=false; //from horizontal if(v>=h) val[i][j]=v; else val[i][j]=h; } } //for i } //for j //trace back to extract the alignment i=len1; j=len2; while(i>0 && j>0) { if(path[i][j]) //from diagonal { j2i[j-1]=i-1; i--; j--; } else { h=val[i-1][j]; if(path[i-1][j]) h +=gap_open; v=val[i][j-1]; if(path[i][j-1]) v +=gap_open; if(v>=h) j--; else i--; } } } //heuristic run of dynamic programing iteratively to find the best alignment //input: initial rotation matrix t, u // vectors x and y, d0 //output: best alignment that maximizes the TMscore, will be stored in invmap double DP_iter_dimer(double **r1, double **r2, double **xtm, double **ytm, double **xt, bool **path, double **val, double **x, double **y, int xlen, int ylen, bool **mask, double t[3], double u[3][3], int invmap0[], int g1, int g2, int iteration_max, double local_d0_search, double D0_MIN, double Lnorm, double d0, double score_d8) { double gap_open[2]={-0.6, 0}; double rmsd; int *invmap=new int[ylen+1]; int iteration, i, j, k; double tmscore, tmscore_max, tmscore_old=0; int score_sum_method=8, simplify_step=40; tmscore_max=-1; //double d01=d0+1.5; double d02=d0*d0; for(int g=g1; g=0) //aligned { xtm[k][0]=x[i][0]; xtm[k][1]=x[i][1]; xtm[k][2]=x[i][2]; ytm[k][0]=y[j][0]; ytm[k][1]=y[j][1]; ytm[k][2]=y[j][2]; k++; } } tmscore = TMscore8_search(r1, r2, xtm, ytm, xt, k, t, u, simplify_step, score_sum_method, &rmsd, local_d0_search, Lnorm, score_d8, d0); if(tmscore>tmscore_max) { tmscore_max=tmscore; for(i=0; i0) { if(fabs(tmscore_old-tmscore)<0.000001) break; } tmscore_old=tmscore; }// for iteration }//for gapopen delete []invmap; return tmscore_max; } void get_initial_ss_dimer(bool **path, double **val, const char *secx, const char *secy, int xlen, int ylen, bool **mask, int *y2x) { double gap_open=-1.0; NWDP_TM_dimer(path, val, secx, secy, xlen, ylen, mask, gap_open, y2x); } bool get_initial5_dimer( double **r1, double **r2, double **xtm, double **ytm, bool **path, double **val, double **x, double **y, int xlen, int ylen, bool **mask, int *y2x, double d0, double d0_search, const bool fast_opt, const double D0_MIN) { double GL, rmsd; double t[3]; double u[3][3]; double d01 = d0 + 1.5; if (d01 < D0_MIN) d01 = D0_MIN; double d02 = d01*d01; double GLmax = 0; int aL = getmin(xlen, ylen); int *invmap = new int[ylen + 1]; // jump on sequence1--------------> int n_jump1 = 0; if (xlen > 250) n_jump1 = 45; else if (xlen > 200) n_jump1 = 35; else if (xlen > 150) n_jump1 = 25; else n_jump1 = 15; if (n_jump1 > (xlen / 3)) n_jump1 = xlen / 3; // jump on sequence2--------------> int n_jump2 = 0; if (ylen > 250) n_jump2 = 45; else if (ylen > 200) n_jump2 = 35; else if (ylen > 150) n_jump2 = 25; else n_jump2 = 15; if (n_jump2 > (ylen / 3)) n_jump2 = ylen / 3; // fragment to superimpose--------------> int n_frag[2] = { 20, 100 }; if (n_frag[0] > (aL / 3)) n_frag[0] = aL / 3; if (n_frag[1] > (aL / 2)) n_frag[1] = aL / 2; // start superimpose search--------------> if (fast_opt) { n_jump1*=5; n_jump2*=5; } bool flag = false; for (int i_frag = 0; i_frag < 2; i_frag++) { int m1 = xlen - n_frag[i_frag] + 1; int m2 = ylen - n_frag[i_frag] + 1; for (int i = 0; iGLmax) { GLmax = GL; for (int ii = 0; ii sequence, const double Lnorm_ass, const double d0_scale, const int i_opt, const int a_opt, const bool u_opt, const bool d_opt, const bool fast_opt, const int mol_type, const double TMcut=-1) { double D0_MIN; //for d0 double Lnorm; //normalization length double score_d8,d0,d0_search,dcu0;//for TMscore search double t[3], u[3][3]; //Kabsch translation vector and rotation matrix double **score; // Input score table for dynamic programming bool **path; // for dynamic programming double **val; // for dynamic programming double **xtm, **ytm; // for TMscore search engine double **xt; //for saving the superposed version of r_1 or xtm double **r1, **r2; // for Kabsch rotation /***********************/ /* allocate memory */ /***********************/ int minlen = min(xlen, ylen); NewArray(&score, xlen+1, ylen+1); NewArray(&path, xlen+1, ylen+1); NewArray(&val, xlen+1, ylen+1); NewArray(&xtm, minlen, 3); NewArray(&ytm, minlen, 3); NewArray(&xt, xlen, 3); NewArray(&r1, minlen, 3); NewArray(&r2, minlen, 3); /***********************/ /* parameter set */ /***********************/ parameter_set4search(xlen, ylen, D0_MIN, Lnorm, score_d8, d0, d0_search, dcu0); int simplify_step = 40; //for simplified search engine int score_sum_method = 8; //for scoring method, whether only sum over pairs with dis= ylen || i1 >= xlen) kk1 = L; else if (sequence[0][kk1] != '-') invmap[i2] = i1; } } //--------------- 2. Align proteins from original alignment double prevD0_MIN = D0_MIN;// stored for later use int prevLnorm = Lnorm; double prevd0 = d0; TM_ali = standard_TMscore(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap, L_ali, rmsd_ali, D0_MIN, Lnorm, d0, d0_search, score_d8, t, u, mol_type); D0_MIN = prevD0_MIN; Lnorm = prevLnorm; d0 = prevd0; TM = detailed_search_standard(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap, t, u, 40, 8, local_d0_search, true, Lnorm, score_d8, d0); if (TM > TMmax) { TMmax = TM; for (i = 0; iTMmax) TMmax = TM; if (TMcut>0) copy_t_u(t, u, t0, u0); //run dynamic programing iteratively to find the best alignment TM = DP_iter_dimer(r1, r2, xtm, ytm, xt, path, val, xa, ya, xlen, ylen, mask, t, u, invmap, 0, 2, (fast_opt)?2:30, local_d0_search, D0_MIN, Lnorm, d0, score_d8); if (TM>TMmax) { TMmax = TM; for (int i = 0; i0) copy_t_u(t, u, t0, u0); } if (TMcut>0) // pre-terminate if TM-score is too low { double TMtmp=approx_TM(xlen, ylen, a_opt, xa, ya, t0, u0, invmap0, mol_type); if (TMtmp<0.5*TMcut) { TM1=TM2=TM3=TM4=TM5=TMtmp; clean_up_after_approx_TM(invmap0, invmap, score, path, val, xtm, ytm, xt, r1, r2, xlen, minlen); return 2; } } /************************************************************/ /* get initial alignment based on secondary structure */ /************************************************************/ get_initial_ss_dimer(path, val, secx, secy, xlen, ylen, mask, invmap); TM = detailed_search(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap, t, u, simplify_step, score_sum_method, local_d0_search, Lnorm, score_d8, d0); if (TM>TMmax) { TMmax = TM; for (int i = 0; i0) copy_t_u(t, u, t0, u0); } if (TM > TMmax*0.2) { TM = DP_iter_dimer(r1, r2, xtm, ytm, xt, path, val, xa, ya, xlen, ylen, mask, t, u, invmap, 0, 2, (fast_opt)?2:30, local_d0_search, D0_MIN, Lnorm, d0, score_d8); if (TM>TMmax) { TMmax = TM; for (int i = 0; i0) copy_t_u(t, u, t0, u0); } } if (TMcut>0) // pre-terminate if TM-score is too low { double TMtmp=approx_TM(xlen, ylen, a_opt, xa, ya, t0, u0, invmap0, mol_type); if (TMtmp<0.52*TMcut) { TM1=TM2=TM3=TM4=TM5=TMtmp; clean_up_after_approx_TM(invmap0, invmap, score, path, val, xtm, ytm, xt, r1, r2, xlen, minlen); return 3; } } /************************************************************/ /* get initial alignment based on local superposition */ /************************************************************/ //=initial5 in original TM-align if (get_initial5_dimer( r1, r2, xtm, ytm, path, val, xa, ya, xlen, ylen, mask, invmap, d0, d0_search, fast_opt, D0_MIN)) { TM = detailed_search(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap, t, u, simplify_step, score_sum_method, local_d0_search, Lnorm, score_d8, d0); if (TM>TMmax) { TMmax = TM; for (int i = 0; i0) copy_t_u(t, u, t0, u0); } if (TM > TMmax*ddcc) { TM = DP_iter_dimer(r1, r2, xtm, ytm, xt, path, val, xa, ya, xlen, ylen, mask, t, u, invmap, 0, 2, 2, local_d0_search, D0_MIN, Lnorm, d0, score_d8); if (TM>TMmax) { TMmax = TM; for (int i = 0; i0) copy_t_u(t, u, t0, u0); } } } else cerr << "\n\nWarning: initial alignment from local superposition fail!\n\n" << endl; if (TMcut>0) // pre-terminate if TM-score is too low { double TMtmp=approx_TM(xlen, ylen, a_opt, xa, ya, t0, u0, invmap0, mol_type); if (TMtmp<0.54*TMcut) { TM1=TM2=TM3=TM4=TM5=TMtmp; clean_up_after_approx_TM(invmap0, invmap, score, path, val, xtm, ytm, xt, r1, r2, xlen, minlen); return 4; } } /********************************************************************/ /* get initial alignment by local superposition+secondary structure */ /********************************************************************/ //=initial3 in original TM-align get_initial_ssplus_dimer(r1, r2, score, path, val, secx, secy, xa, ya, xlen, ylen, mask, invmap0, invmap, D0_MIN, d0); TM = detailed_search(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap, t, u, simplify_step, score_sum_method, local_d0_search, Lnorm, score_d8, d0); if (TM>TMmax) { TMmax = TM; for (i = 0; i0) copy_t_u(t, u, t0, u0); } if (TM > TMmax*ddcc) { TM = DP_iter_dimer(r1, r2, xtm, ytm, xt, path, val, xa, ya, xlen, ylen, mask, t, u, invmap, 0, 2, (fast_opt)?2:30, local_d0_search, D0_MIN, Lnorm, d0, score_d8); if (TM>TMmax) { TMmax = TM; for (i = 0; i0) copy_t_u(t, u, t0, u0); } } if (TMcut>0) // pre-terminate if TM-score is too low { double TMtmp=approx_TM(xlen, ylen, a_opt, xa, ya, t0, u0, invmap0, mol_type); if (TMtmp<0.56*TMcut) { TM1=TM2=TM3=TM4=TM5=TMtmp; clean_up_after_approx_TM(invmap0, invmap, score, path, val, xtm, ytm, xt, r1, r2, xlen, minlen); return 5; } } /*******************************************************************/ /* get initial alignment based on fragment gapless threading */ /*******************************************************************/ //=initial4 in original TM-align get_initial_fgt(r1, r2, xtm, ytm, xa, ya, xlen, ylen, invmap, d0, d0_search, dcu0, fast_opt, t, u); TM = detailed_search(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap, t, u, simplify_step, score_sum_method, local_d0_search, Lnorm, score_d8, d0); if (TM>TMmax) { TMmax = TM; for (i = 0; i0) copy_t_u(t, u, t0, u0); } if (TM > TMmax*ddcc) { TM = DP_iter_dimer(r1, r2, xtm, ytm, xt, path, val, xa, ya, xlen, ylen, mask, t, u, invmap, 1, 2, 2, local_d0_search, D0_MIN, Lnorm, d0, score_d8); if (TM>TMmax) { TMmax = TM; for (i = 0; i0) copy_t_u(t, u, t0, u0); } } if (TMcut>0) // pre-terminate if TM-score is too low { double TMtmp=approx_TM(xlen, ylen, a_opt, xa, ya, t0, u0, invmap0, mol_type); if (TMtmp<0.58*TMcut) { TM1=TM2=TM3=TM4=TM5=TMtmp; clean_up_after_approx_TM(invmap0, invmap, score, path, val, xtm, ytm, xt, r1, r2, xlen, minlen); return 6; } } //************************************************// // get initial alignment from user's input: // //************************************************// if (i_opt==1)// if input has set parameter for "-i" { for (int j = 0; j < ylen; j++)// Set aligned position to be "-1" invmap[j] = -1; int i1 = -1;// in C version, index starts from zero, not from one int i2 = -1; int L1 = sequence[0].size(); int L2 = sequence[1].size(); int L = min(L1, L2);// Get positions for aligned residues for (int kk1 = 0; kk1 < L; kk1++) { if (sequence[0][kk1] != '-') i1++; if (sequence[1][kk1] != '-') { i2++; if (i2 >= ylen || i1 >= xlen) kk1 = L; else if (sequence[0][kk1] != '-') invmap[i2] = i1; } } //--------------- 2. Align proteins from original alignment double prevD0_MIN = D0_MIN;// stored for later use int prevLnorm = Lnorm; double prevd0 = d0; TM_ali = standard_TMscore(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap, L_ali, rmsd_ali, D0_MIN, Lnorm, d0, d0_search, score_d8, t, u, mol_type); D0_MIN = prevD0_MIN; Lnorm = prevLnorm; d0 = prevd0; TM = detailed_search_standard(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap, t, u, 40, 8, local_d0_search, true, Lnorm, score_d8, d0); if (TM > TMmax) { TMmax = TM; for (i = 0; iTMmax) { TMmax = TM; for (i = 0; i=0) { flag=true; break; } } if(!flag) { cout << "There is no alignment between the two proteins! " << "Program stop with no result!" << endl; TM1=TM2=TM3=TM4=TM5=0; return 1; } /* last TM-score pre-termination */ if (TMcut>0) { double TMtmp=approx_TM(xlen, ylen, a_opt, xa, ya, t0, u0, invmap0, mol_type); if (TMtmp<0.6*TMcut) { TM1=TM2=TM3=TM4=TM5=TMtmp; clean_up_after_approx_TM(invmap0, invmap, score, path, val, xtm, ytm, xt, r1, r2, xlen, minlen); return 7; } } //********************************************************************// // Detailed TMscore search engine --> prepare for final TMscore // //********************************************************************// //run detailed TMscore search engine for the best alignment, and //extract the best rotation matrix (t, u) for the best alignment simplify_step=1; if (fast_opt) simplify_step=40; score_sum_method=8; TM = detailed_search_standard(r1, r2, xtm, ytm, xt, xa, ya, xlen, ylen, invmap0, t, u, simplify_step, score_sum_method, local_d0_search, false, Lnorm, score_d8, d0); //select pairs with dis=0)//aligned { n_ali++; d=sqrt(dist(&xt[i][0], &ya[j][0])); if (d <= score_d8 || (i_opt == 3)) { m1[k]=i; m2[k]=j; xtm[k][0]=xa[i][0]; xtm[k][1]=xa[i][1]; xtm[k][2]=xa[i][2]; ytm[k][0]=ya[j][0]; ytm[k][1]=ya[j][1]; ytm[k][2]=ya[j][2]; r1[k][0] = xt[i][0]; r1[k][1] = xt[i][1]; r1[k][2] = xt[i][2]; r2[k][0] = ya[j][0]; r2[k][1] = ya[j][1]; r2[k][2] = ya[j][2]; k++; } } } n_ali8=k; Kabsch(r1, r2, n_ali8, 0, &rmsd0, t, u);// rmsd0 is used for final output, only recalculate rmsd0, not t & u rmsd0 = sqrt(rmsd0 / n_ali8); //****************************************// // Final TMscore // // Please set parameters for output // //****************************************// double rmsd; simplify_step=1; score_sum_method=0; double Lnorm_0=ylen; //normalized by length of structure A parameter_set4final(Lnorm_0, D0_MIN, Lnorm, d0, d0_search, mol_type); d0A=d0; d0_0=d0A; local_d0_search = d0_search; TM1 = TMscore8_search(r1, r2, xtm, ytm, xt, n_ali8, t0, u0, simplify_step, score_sum_method, &rmsd, local_d0_search, Lnorm, score_d8, d0); TM_0 = TM1; //normalized by length of structure B parameter_set4final(xlen+0.0, D0_MIN, Lnorm, d0, d0_search, mol_type); d0B=d0; local_d0_search = d0_search; TM2 = TMscore8_search(r1, r2, xtm, ytm, xt, n_ali8, t, u, simplify_step, score_sum_method, &rmsd, local_d0_search, Lnorm, score_d8, d0); double Lnorm_d0; if (a_opt>0) { //normalized by average length of structures A, B Lnorm_0=(xlen+ylen)*0.5; parameter_set4final(Lnorm_0, D0_MIN, Lnorm, d0, d0_search, mol_type); d0a=d0; d0_0=d0a; local_d0_search = d0_search; TM3 = TMscore8_search(r1, r2, xtm, ytm, xt, n_ali8, t0, u0, simplify_step, score_sum_method, &rmsd, local_d0_search, Lnorm, score_d8, d0); TM_0=TM3; } if (u_opt) { //normalized by user assigned length parameter_set4final(Lnorm_ass, D0_MIN, Lnorm, d0, d0_search, mol_type); d0u=d0; d0_0=d0u; Lnorm_0=Lnorm_ass; local_d0_search = d0_search; TM4 = TMscore8_search(r1, r2, xtm, ytm, xt, n_ali8, t0, u0, simplify_step, score_sum_method, &rmsd, local_d0_search, Lnorm, score_d8, d0); TM_0=TM4; } if (d_opt) { //scaled by user assigned d0 parameter_set4scale(ylen, d0_scale, Lnorm, d0, d0_search); d0_out=d0_scale; d0_0=d0_scale; //Lnorm_0=ylen; Lnorm_d0=Lnorm_0; local_d0_search = d0_search; TM5 = TMscore8_search(r1, r2, xtm, ytm, xt, n_ali8, t0, u0, simplify_step, score_sum_method, &rmsd, local_d0_search, Lnorm, score_d8, d0); TM_0=TM5; } /* derive alignment from superposition */ int ali_len=xlen+ylen; //maximum length of alignment seqxA.assign(ali_len,'-'); seqM.assign( ali_len,' '); seqyA.assign(ali_len,'-'); //do_rotation(xa, xt, xlen, t, u); do_rotation(xa, xt, xlen, t0, u0); int kk=0, i_old=0, j_old=0; d=0; for(int k=0; k > >&xa_vec, const vector > >&ya_vec, const vector >&seqx_vec, const vector >&seqy_vec, const vector >&secx_vec, const vector >&secy_vec, const vector &mol_vec1, const vector &mol_vec2, const vector &xlen_vec, const vector &ylen_vec, double **xa, double **ya, char *seqx, char *seqy, char *secx, char *secy, int len_aa, int len_na, int chain1_num, int chain2_num, double **TMave_mat, vector >&seqxA_mat, vector >&seqyA_mat, int *assign1_list, int *assign2_list, vector&sequence, double d0_scale, bool fast_opt) { int i,j; int xlen=0; int ylen=0; vector xlen_dimer; vector ylen_dimer; for (i=0;i().swap(xlen_dimer); vector().swap(ylen_dimer); seqx = new char[xlen+1]; secx = new char[xlen+1]; NewArray(&xa, xlen, 3); seqy = new char[ylen+1]; secy = new char[ylen+1]; NewArray(&ya, ylen, 3); int mol_type=copy_chain_pair_data(xa_vec, ya_vec, seqx_vec, seqy_vec, secx_vec, secy_vec, mol_vec1, mol_vec2, xlen_vec, ylen_vec, xa, ya, seqx, seqy, secx, secy, chain1_num, chain2_num, seqxA_mat, seqyA_mat, assign1_list, assign2_list, sequence); /* declare variable specific to this pair of TMalign */ double t0[3], u0[3][3]; double TM1, TM2; double TM3, TM4, TM5; // for a_opt, u_opt, d_opt double d0_0, TM_0; double d0A, d0B, d0u, d0a; double d0_out=5.0; string seqM, seqxA, seqyA;// for output alignment double rmsd0 = 0.0; int L_ali; // Aligned length in standard_TMscore double Liden=0; double TM_ali, rmsd_ali; // TMscore and rmsd in standard_TMscore int n_ali=0; int n_ali8=0; double Lnorm_ass=len_aa+len_na; TMalign_dimer_main(xa, ya, seqx, seqy, secx, secy, t0, u0, TM1, TM2, TM3, TM4, TM5, d0_0, TM_0, d0A, d0B, d0u, d0a, d0_out, seqM, seqxA, seqyA, rmsd0, L_ali, Liden, TM_ali, rmsd_ali, n_ali, n_ali8, xlen, ylen, mask, sequence, Lnorm_ass, d0_scale, 1, false, true, false, fast_opt, mol_type, -1); /* clean up TM-align */ delete [] seqx; delete [] seqy; delete [] secx; delete [] secy; DeleteArray(&xa,xlen); DeleteArray(&ya,ylen); DeleteArray(&mask,xlen+1); /* re-compute chain level alignment */ total_score=0; for (i=0;i0) Lnorm_ass=len_na; /* entry function for structure alignment */ se_main(xt, ya, seqx, seqy, TM1, TM2, TM3, TM4, TM5, d0_0, TM_0, d0A, d0B, d0u, d0a, d0_out, seqM, seqxA, seqyA, rmsd0, L_ali, Liden, TM_ali, rmsd_ali, n_ali, n_ali8, xlen, ylen, sequence, Lnorm_ass, d0_scale, 0, false, 2, false, mol_vec1[i]+mol_vec2[j], 1, invmap); /* print result */ seqxA_mat[i][j]=seqxA; seqyA_mat[i][j]=seqyA; TMave_mat[i][j]=TM4*Lnorm_ass; if (assign1_list[i]==j) { if (TM4<=0) assign1_list[i]=assign2_list[j]=-1; else total_score+=TMave_mat[i][j]; } /* clean up */ seqM.clear(); seqxA.clear(); seqyA.clear(); delete[]seqy; delete[]secy; DeleteArray(&ya,ylen); delete[]invmap; } delete[]seqx; delete[]secx; DeleteArray(&xa,xlen); DeleteArray(&xt,xlen); } return; } int main(int argc, char *argv[]) { if (argc < 2) print_help(); clock_t t1, t2; t1 = clock(); /**********************/ /* get argument */ /**********************/ string xname = ""; string yname = ""; string fname_super = ""; // file name for superposed structure string fname_lign = ""; // file name for user alignment string fname_matrix= ""; // file name for output matrix vector sequence; // get value from alignment file double d0_scale =0; bool h_opt = false; // print full help message bool v_opt = false; // print version bool m_opt = false; // flag for -m, output rotation matrix bool o_opt = false; // flag for -o, output superposed structure int a_opt = 0; // flag for -a, do not normalized by average length bool d_opt = false; // flag for -d, user specified d0 bool full_opt = false;// do not show chain level alignment double TMcut =-1; int infmt1_opt=-1; // PDB or PDBx/mmCIF format for chain_1 int infmt2_opt=-1; // PDB or PDBx/mmCIF format for chain_2 int ter_opt =1; // ENDMDL or END int split_opt =2; // split by chain int outfmt_opt=0; // set -outfmt to full output bool fast_opt =false; // flags for -fast, fTM-align algorithm int mirror_opt=0; // do not align mirror int het_opt =0; // do not read HETATM residues string atom_opt ="auto";// use C alpha atom for protein and C3' for RNA string mol_opt ="auto";// auto-detect the molecule type as protein/RNA string suffix_opt=""; // set -suffix to empty string dir1_opt =""; // set -dir1 to empty string dir2_opt =""; // set -dir2 to empty vector chain1_list; // only when -dir1 is set vector chain2_list; // only when -dir2 is set for(int i = 1; i < argc; i++) { if ( !strcmp(argv[i],"-o") && i < (argc-1) ) { fname_super = argv[i + 1]; o_opt = true; i++; } else if ( !strcmp(argv[i],"-a") && i < (argc-1) ) { if (!strcmp(argv[i + 1], "T")) a_opt=true; else if (!strcmp(argv[i + 1], "F")) a_opt=false; else { a_opt=atoi(argv[i + 1]); if (a_opt!=-2 && a_opt!=-1 && a_opt!=1) PrintErrorAndQuit("-a must be -2, -1, 1, T or F"); } i++; } else if ( !strcmp(argv[i],"-full") && i < (argc-1) ) { if (!strcmp(argv[i + 1], "T")) full_opt=true; else if (!strcmp(argv[i + 1], "F")) full_opt=false; else PrintErrorAndQuit("-full must be T or F"); i++; } else if ( !strcmp(argv[i],"-d") && i < (argc-1) ) { d0_scale = atof(argv[i + 1]); d_opt = true; i++; } else if ( !strcmp(argv[i],"-v") ) { v_opt = true; } else if ( !strcmp(argv[i],"-h") ) { h_opt = true; } else if (!strcmp(argv[i], "-m") && i < (argc-1) ) { fname_matrix = argv[i + 1]; m_opt = true; i++; }// get filename for rotation matrix else if (!strcmp(argv[i], "-fast")) { fast_opt = true; } else if ( !strcmp(argv[i],"-infmt1") && i < (argc-1) ) { infmt1_opt=atoi(argv[i + 1]); i++; } else if ( !strcmp(argv[i],"-infmt2") && i < (argc-1) ) { infmt2_opt=atoi(argv[i + 1]); i++; } else if ( !strcmp(argv[i],"-ter") && i < (argc-1) ) { ter_opt=atoi(argv[i + 1]); i++; } else if ( !strcmp(argv[i],"-split") && i < (argc-1) ) { split_opt=atoi(argv[i + 1]); i++; } else if ( !strcmp(argv[i],"-atom") && i < (argc-1) ) { atom_opt=argv[i + 1]; i++; } else if ( !strcmp(argv[i],"-mol") && i < (argc-1) ) { mol_opt=argv[i + 1]; i++; } else if ( !strcmp(argv[i],"-dir1") && i < (argc-1) ) { dir1_opt=argv[i + 1]; i++; } else if ( !strcmp(argv[i],"-dir2") && i < (argc-1) ) { dir2_opt=argv[i + 1]; i++; } else if ( !strcmp(argv[i],"-suffix") && i < (argc-1) ) { suffix_opt=argv[i + 1]; i++; } else if ( !strcmp(argv[i],"-outfmt") && i < (argc-1) ) { outfmt_opt=atoi(argv[i + 1]); i++; } else if ( !strcmp(argv[i],"-TMcut") && i < (argc-1) ) { TMcut=atof(argv[i + 1]); i++; } else if ( !strcmp(argv[i],"-het") && i < (argc-1) ) { het_opt=atoi(argv[i + 1]); i++; } else if (xname.size() == 0) xname=argv[i]; else if (yname.size() == 0) yname=argv[i]; else PrintErrorAndQuit(string("ERROR! Undefined option ")+argv[i]); } if(yname.size()==0) { if (h_opt) print_help(h_opt); if (v_opt) { print_version(); exit(EXIT_FAILURE); } if (xname.size()==0) PrintErrorAndQuit("Please provide input structures"); PrintErrorAndQuit("Please provide the second input structure"); } if (suffix_opt.size() && dir1_opt.size()+dir2_opt.size()==0) PrintErrorAndQuit("-suffix is only valid if -dir1 or -dir2 is set"); if ((dir1_opt.size() || dir2_opt.size()) && (m_opt || o_opt)) PrintErrorAndQuit("-m or -o cannot be set with -dir1 or -dir2"); if (atom_opt.size()!=4) PrintErrorAndQuit("ERROR! Atom name must have 4 characters, including space."); if (mol_opt!="auto" && mol_opt!="protein" && mol_opt!="RNA") PrintErrorAndQuit("ERROR! Molecule type must be either RNA or protein."); else if (mol_opt=="protein" && atom_opt=="auto") atom_opt=" CA "; else if (mol_opt=="RNA" && atom_opt=="auto") atom_opt=" C3'"; if (d_opt && d0_scale<=0) PrintErrorAndQuit("Wrong value for option -d! It should be >0"); if (outfmt_opt>=2 && (a_opt || d_opt)) PrintErrorAndQuit("-outfmt 2 cannot be used with -a, -d"); if (ter_opt!=0 && ter_opt!=1) PrintErrorAndQuit("-ter should be 1 or 0"); if (split_opt!=1 && split_opt!=2) PrintErrorAndQuit("-split should be 1 or 2"); else if (split_opt==1 && ter_opt!=0) PrintErrorAndQuit("-split 1 should be used with -ter 0"); if (m_opt && fname_matrix == "") // Output rotation matrix: matrix.txt PrintErrorAndQuit("ERROR! Please provide a file name for option -m!"); /* parse file list */ if (dir1_opt.size()==0) chain1_list.push_back(xname); else file2chainlist(chain1_list, xname, dir1_opt, suffix_opt); if (dir2_opt.size()==0) chain2_list.push_back(yname); else file2chainlist(chain2_list, yname, dir2_opt, suffix_opt); if (outfmt_opt==2) cout<<"#PDBchain1\tPDBchain2\tTM1\tTM2\t" <<"RMSD\tID1\tID2\tIDali\tL1\tL2\tLali"< > > xa_vec; // structure of complex1 vector > > ya_vec; // structure of complex2 vector >seqx_vec; // sequence of complex1 vector >seqy_vec; // sequence of complex2 vector >secx_vec; // secondary structure of complex1 vector >secy_vec; // secondary structure of complex2 vector mol_vec1; // molecule type of complex1, RNA if >0 vector mol_vec2; // molecule type of complex2, RNA if >0 vector chainID_list1; // list of chainID1 vector chainID_list2; // list of chainID2 vector xlen_vec; // length of complex1 vector ylen_vec; // length of complex2 int i,j; // chain index int xlen, ylen; // chain length double **xa, **ya; // structure of single chain char *seqx, *seqy; // for the protein sequence char *secx, *secy; // for the secondary structure int xlen_aa,ylen_aa; // total length of protein int xlen_na,ylen_na; // total length of RNA/DNA vector resi_vec1; // residue index for chain1 vector resi_vec2; // residue index for chain2 /* parse complex */ parse_chain_list(chain1_list, xa_vec, seqx_vec, secx_vec, mol_vec1, xlen_vec, chainID_list1, ter_opt, split_opt, mol_opt, infmt1_opt, atom_opt, mirror_opt, het_opt, xlen_aa, xlen_na, o_opt, resi_vec1); if (xa_vec.size()==0) PrintErrorAndQuit("ERROR! 0 chain in complex 1"); parse_chain_list(chain2_list, ya_vec, seqy_vec, secy_vec, mol_vec2, ylen_vec, chainID_list2, ter_opt, split_opt, mol_opt, infmt2_opt, atom_opt, 0, het_opt, ylen_aa, ylen_na, o_opt, resi_vec2); if (ya_vec.size()==0) PrintErrorAndQuit("ERROR! 0 chain in complex 2"); int len_aa=getmin(xlen_aa,ylen_aa); int len_na=getmin(xlen_na,ylen_na); if (a_opt) { len_aa=(xlen_aa+ylen_aa)/2; len_na=(xlen_na+ylen_na)/2; } /* perform monomer alignment if there is only one chain */ if (xa_vec.size()==1 && ya_vec.size()==1) { xlen = xlen_vec[0]; ylen = ylen_vec[0]; seqx = new char[xlen+1]; seqy = new char[ylen+1]; secx = new char[xlen+1]; secy = new char[ylen+1]; NewArray(&xa, xlen, 3); NewArray(&ya, ylen, 3); copy_chain_data(xa_vec[0],seqx_vec[0],secx_vec[0], xlen,xa,seqx,secx); copy_chain_data(ya_vec[0],seqy_vec[0],secy_vec[0], ylen,ya,seqy,secy); /* declare variable specific to this pair of TMalign */ double t0[3], u0[3][3]; double TM1, TM2; double TM3, TM4, TM5; // for a_opt, u_opt, d_opt double d0_0, TM_0; double d0A, d0B, d0u, d0a; double d0_out=5.0; string seqM, seqxA, seqyA;// for output alignment double rmsd0 = 0.0; int L_ali; // Aligned length in standard_TMscore double Liden=0; double TM_ali, rmsd_ali; // TMscore and rmsd in standard_TMscore int n_ali=0; int n_ali8=0; /* entry function for structure alignment */ TMalign_main(xa, ya, seqx, seqy, secx, secy, t0, u0, TM1, TM2, TM3, TM4, TM5, d0_0, TM_0, d0A, d0B, d0u, d0a, d0_out, seqM, seqxA, seqyA, rmsd0, L_ali, Liden, TM_ali, rmsd_ali, n_ali, n_ali8, xlen, ylen, sequence, 0, d0_scale, 0, a_opt, false, d_opt, fast_opt, mol_vec1[0]+mol_vec2[0],TMcut); /* print result */ output_results( xname.substr(dir1_opt.size()), yname.substr(dir2_opt.size()), chainID_list1[0], chainID_list2[0], xlen, ylen, t0, u0, TM1, TM2, TM3, TM4, TM5, rmsd0, d0_out, seqM.c_str(), seqxA.c_str(), seqyA.c_str(), Liden, n_ali8, L_ali, TM_ali, rmsd_ali, TM_0, d0_0, d0A, d0B, 0, d0_scale, d0a, d0u, (m_opt?fname_matrix:"").c_str(), outfmt_opt, ter_opt, true, split_opt, o_opt, fname_super, 0, a_opt, false, d_opt, mirror_opt, resi_vec1, resi_vec2); /* clean up */ seqM.clear(); seqxA.clear(); seqyA.clear(); delete[]seqx; delete[]seqy; delete[]secx; delete[]secy; DeleteArray(&xa,xlen); DeleteArray(&ya,ylen); chain1_list.clear(); chain2_list.clear(); sequence.clear(); vector > >().swap(xa_vec); // structure of complex1 vector > >().swap(ya_vec); // structure of complex2 vector >().swap(seqx_vec); // sequence of complex1 vector >().swap(seqy_vec); // sequence of complex2 vector >().swap(secx_vec); // secondary structure of complex1 vector >().swap(secy_vec); // secondary structure of complex2 mol_vec1.clear(); // molecule type of complex1, RNA if >0 mol_vec2.clear(); // molecule type of complex2, RNA if >0 chainID_list1.clear(); // list of chainID1 chainID_list2.clear(); // list of chainID2 xlen_vec.clear(); // length of complex1 ylen_vec.clear(); // length of complex2 t2 = clock(); float diff = ((float)t2 - (float)t1)/CLOCKS_PER_SEC; printf("#Total CPU time is %5.2f seconds\n", diff); return 0; } /* declare TM-score tables */ int chain1_num=xa_vec.size(); int chain2_num=ya_vec.size(); vector tmp_str_vec(chain2_num,""); double **TMave_mat; double **ut_mat; // rotation matrices for all-against-all alignment int ui,uj,ut_idx; NewArray(&TMave_mat,chain1_num,chain2_num); NewArray(&ut_mat,chain1_num*chain2_num,4*3); vector >seqxA_mat(chain1_num,tmp_str_vec); vector > seqM_mat(chain1_num,tmp_str_vec); vector >seqyA_mat(chain1_num,tmp_str_vec); double maxTMmono=-1; int maxTMmono_i,maxTMmono_j; /* get all-against-all alignment */ if (len_aa+len_na>500) fast_opt=true; for (i=0;i0) Lnorm_tmp=len_na; /* entry function for structure alignment */ TMalign_main(xa, ya, seqx, seqy, secx, secy, t0, u0, TM1, TM2, TM3, TM4, TM5, d0_0, TM_0, d0A, d0B, d0u, d0a, d0_out, seqM, seqxA, seqyA, rmsd0, L_ali, Liden, TM_ali, rmsd_ali, n_ali, n_ali8, xlen, ylen, sequence, Lnorm_tmp, d0_scale, 0, false, true, false, fast_opt, mol_vec1[i]+mol_vec2[j],TMcut); /* store result */ for (ui=0;ui<3;ui++) for (uj=0;uj<3;uj++) ut_mat[ut_idx][ui*3+uj]=u0[ui][uj]; for (uj=0;uj<3;uj++) ut_mat[ut_idx][9+uj]=t0[uj]; seqxA_mat[i][j]=seqxA; seqyA_mat[i][j]=seqyA; TMave_mat[i][j]=TM4*Lnorm_tmp; if (TMave_mat[i][j]>maxTMmono) { maxTMmono=TMave_mat[i][j]; maxTMmono_i=i; maxTMmono_j=j; } /* clean up */ seqM.clear(); seqxA.clear(); seqyA.clear(); delete[]seqy; delete[]secy; DeleteArray(&ya,ylen); } delete[]seqx; delete[]secx; DeleteArray(&xa,xlen); } /* calculate initial chain-chain assignment */ int *assign1_list; // value is index of assigned chain2 int *assign2_list; // value is index of assigned chain1 assign1_list=new int[chain1_num]; assign2_list=new int[chain2_num]; double total_score=enhanced_greedy_search(TMave_mat, assign1_list, assign2_list, chain1_num, chain2_num); if (total_score<=0) PrintErrorAndQuit("ERROR! No assignable chain"); /* refine alignment for large oligomers */ int aln_chain_num=count_assign_pair(assign1_list,chain1_num); bool is_oligomer=(aln_chain_num>=3); if (aln_chain_num==2) // dimer alignment { int na_chain_num1,na_chain_num2,aa_chain_num1,aa_chain_num2; count_na_aa_chain_num(na_chain_num1,aa_chain_num1,mol_vec1); count_na_aa_chain_num(na_chain_num2,aa_chain_num2,mol_vec2); /* align protein-RNA hybrid dimer to another hybrid dimer */ if (na_chain_num1==1 && na_chain_num2==1 && aa_chain_num1==1 && aa_chain_num2==1) is_oligomer=false; /* align pure protein dimer or pure RNA dimer */ else if ((getmin(na_chain_num1,na_chain_num2)==0 && aa_chain_num1==2 && aa_chain_num2==2) || (getmin(aa_chain_num1,aa_chain_num2)==0 && na_chain_num1==2 && na_chain_num2==2)) { adjust_dimer_assignment(xa_vec,ya_vec,xlen_vec,ylen_vec,mol_vec1, mol_vec2,assign1_list,assign2_list,seqxA_mat,seqyA_mat); is_oligomer=false; // cannot refiner further } else is_oligomer=true; /* align oligomers to dimer */ } if (aln_chain_num>=3 || is_oligomer) // oligomer alignment { /* extract centroid coordinates */ double **xcentroids; double **ycentroids; NewArray(&xcentroids, chain1_num, 3); NewArray(&ycentroids, chain2_num, 3); double d0MM=getmin( calculate_centroids(xa_vec, chain1_num, xcentroids), calculate_centroids(ya_vec, chain2_num, ycentroids)); /* refine enhanced greedy search with centroid superposition */ //double het_deg=check_heterooligomer(TMave_mat, chain1_num, chain2_num); homo_refined_greedy_search(TMave_mat, assign1_list, assign2_list, chain1_num, chain2_num, xcentroids, ycentroids, d0MM, len_aa+len_na, ut_mat); hetero_refined_greedy_search(TMave_mat, assign1_list, assign2_list, chain1_num, chain2_num, xcentroids, ycentroids, d0MM, len_aa+len_na); /* clean up */ DeleteArray(&xcentroids, chain1_num); DeleteArray(&ycentroids, chain2_num); } /* store initial assignment */ int init_pair_num=count_assign_pair(assign1_list,chain1_num); int *assign1_init, *assign2_init; assign1_init=new int[chain1_num]; assign2_init=new int[chain2_num]; double **TMave_init; NewArray(&TMave_init,chain1_num,chain2_num); vector >seqxA_init(chain1_num,tmp_str_vec); vector >seqyA_init(chain1_num,tmp_str_vec); vector sequence_init; copy_chain_assign_data(chain1_num, chain2_num, sequence_init, seqxA_mat, seqyA_mat, assign1_list, assign2_list, TMave_mat, seqxA_init, seqyA_init, assign1_init, assign2_init, TMave_init); /* perform iterative alignment */ double max_total_score=0; // ignore old total_score because previous // score was from monomeric chain superpositions int max_iter=5-(int)((len_aa+len_na)/200); if (max_iter<2) max_iter=2; MMalign_iter(max_total_score, max_iter, xa_vec, ya_vec, seqx_vec, seqy_vec, secx_vec, secy_vec, mol_vec1, mol_vec2, xlen_vec, ylen_vec, xa, ya, seqx, seqy, secx, secy, len_aa, len_na, chain1_num, chain2_num, TMave_mat, seqxA_mat, seqyA_mat, assign1_list, assign2_list, sequence, d0_scale, fast_opt); /* sometime MMalign_iter is even worse than monomer alignment */ if (max_total_score=init_pair_num) copy_chain_assign_data( chain1_num, chain2_num, sequence_init, seqxA_mat, seqyA_mat, assign1_list, assign2_list, TMave_mat, seqxA_init, seqyA_init, assign1_init, assign2_init, TMave_init); double max_total_score_cross=max_total_score; //if (init_pair_num!=2 && is_oligomer==false) MMalign_cross( //max_total_score_cross, max_iter, xa_vec, ya_vec, seqx_vec, seqy_vec, //secx_vec, secy_vec, mol_vec1, mol_vec2, xlen_vec, ylen_vec, //xa, ya, seqx, seqy, secx, secy, len_aa, len_na, chain1_num, chain2_num, //TMave_init, seqxA_init, seqyA_init, assign1_init, assign2_init, sequence_init, //d0_scale, true); //else MMalign_dimer(max_total_score_cross, xa_vec, ya_vec, seqx_vec, seqy_vec, secx_vec, secy_vec, mol_vec1, mol_vec2, xlen_vec, ylen_vec, xa, ya, seqx, seqy, secx, secy, len_aa, len_na, chain1_num, chain2_num, TMave_init, seqxA_init, seqyA_init, assign1_init, assign2_init, sequence_init, d0_scale, fast_opt); if (max_total_score_cross>max_total_score) { max_total_score=max_total_score_cross; copy_chain_assign_data(chain1_num, chain2_num, sequence, seqxA_init, seqyA_init, assign1_init, assign2_init, TMave_init, seqxA_mat, seqyA_mat, assign1_list, assign2_list, TMave_mat); } /* final alignment */ if (outfmt_opt==0) print_version(); MMalign_final(xname.substr(dir1_opt.size()), yname.substr(dir2_opt.size()), chainID_list1, chainID_list2, fname_super, fname_lign, fname_matrix, xa_vec, ya_vec, seqx_vec, seqy_vec, secx_vec, secy_vec, mol_vec1, mol_vec2, xlen_vec, ylen_vec, xa, ya, seqx, seqy, secx, secy, len_aa, len_na, chain1_num, chain2_num, TMave_mat, seqxA_mat, seqM_mat, seqyA_mat, assign1_list, assign2_list, sequence, d0_scale, m_opt, o_opt, outfmt_opt, ter_opt, split_opt, a_opt, d_opt, fast_opt, full_opt, mirror_opt, resi_vec1, resi_vec2); /* clean up everything */ delete [] assign1_list; delete [] assign2_list; DeleteArray(&TMave_mat,chain1_num); DeleteArray(&ut_mat, chain1_num*chain2_num); vector >().swap(seqxA_mat); vector >().swap(seqM_mat); vector >().swap(seqyA_mat); vector().swap(tmp_str_vec); delete [] assign1_init; delete [] assign2_init; DeleteArray(&TMave_init,chain1_num); vector >().swap(seqxA_init); vector >().swap(seqyA_init); vector > >().swap(xa_vec); // structure of complex1 vector > >().swap(ya_vec); // structure of complex2 vector >().swap(seqx_vec); // sequence of complex1 vector >().swap(seqy_vec); // sequence of complex2 vector >().swap(secx_vec); // secondary structure of complex1 vector >().swap(secy_vec); // secondary structure of complex2 mol_vec1.clear(); // molecule type of complex1, RNA if >0 mol_vec2.clear(); // molecule type of complex2, RNA if >0 vector().swap(chainID_list1); // list of chainID1 vector().swap(chainID_list2); // list of chainID2 xlen_vec.clear(); // length of complex1 ylen_vec.clear(); // length of complex2 vector().swap(chain1_list); vector().swap(chain2_list); vector().swap(sequence); t2 = clock(); float diff = ((float)t2 - (float)t1)/CLOCKS_PER_SEC; printf("#Total CPU time is %5.2f seconds\n", diff); return 0; }