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INTRODUCTION

Template-based modeling is by far the most reliable and accurate

approach to the problem of protein structure prediction.1–3 The

critical step for the template-based modeling is to identify correct

template proteins from the PDB library which have similar folds as

the target protein and to make correct alignment between the target

sequence and the template structure. This process is called threading

or fold recognition.4–6 There have been a number of threading

algorithms in literature based on various approaches, for example

the sequence profile–profile alignment,7–14 structural profile align-

ment,15–17 hidden Markov models,18–20 machine learning,21,22

and pair-wise potentials with optimal searching.23–26

We recently developed a simple threading algorithm, PPA,27 by

the sequence profile alignment of target and template proteins com-

bined with the secondary structure match. The PPA algorithm has

been successfully used in CASP7 as the initial step of the I-TASSER

modeling.28 PPA is also used in the LOMETS meta-server threading

where the average TM-score29 of PPA is comparable to the best of

other single programs in the LOMETS package.30 On the other

hand, the general profile–profile alignment methods7–14 have dem-

onstrated dominant advantages in many blind threading tests.31–34

For example, in LiveBench-8,31 all top four servers (BASD/MASP/

MBAS, SFST/STMP, FFAS03, and ORF2/ORFS) are based on the

sequence profile–profile alignment. In CAFASP32 and the recent

CASP server section,34 several sequence-profile-based methods were

ranked at the top of single threading servers. Nevertheless, many

authors show that additional sequence and structure features can

improve further the accuracy of the sequence-structure align-

ments.13,14,25,35,36 For example, Zhou et al. show that a frag-

ment-depth based structure profile can improve both the sensitivity

and specificity of the sequence profile alignments.14 Silva shows

that a simplified hydrophobicity matrix based on the hydrophobic

cluster analysis (HCA)37 can detect similar folds without sharing

obvious sequence similarity.36 Skolnick et al. show that iterative

contact predictions can significantly improve the recognition power
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ABSTRACT

We develop a new threading algorithm MUSTER

by extending the previous sequence profile–profile

alignment method, PPA. It combines various

sequence and structure information into single-

body terms which can be conveniently used in

dynamic programming search: (1) sequence pro-

files; (2) secondary structures; (3) structure frag-

ment profiles; (4) solvent accessibility; (5) dihedral

torsion angles; (6) hydrophobic scoring matrix.

The balance of the weighting parameters is opti-

mized by a grading search based on the average

TM-score of 111 training proteins which shows a

better performance than using the conventional

optimization methods based on the PROSUP data-

base. The algorithm is tested on 500 nonhomolo-

gous proteins independent of the training sets.

After removing the homologous templates with a

sequence identity to the target >30%, in 224 cases,

the first template alignment has the correct topol-

ogy with a TM-score >0.5. Even with a more

stringent cutoff by removing the templates with a

sequence identity >20% or detectable by PSI-

BLAST with an E-value <0.05, MUSTER is able to

identify correct folds in 137 cases with the first

model of TM-score >0.5. Dependent on the homol-

ogy cutoffs, the average TM-score of the first

threading alignments by MUSTER is 5.1–6.3%

higher than that by PPA. This improvement is

statistically significant by the Wilcoxon signed

rank test with a P-value < 1.0 3 10213, which

demonstrates the effect of additional structural

information on the protein fold recognition. The

MUSTER server is freely available to the academic

community at http://zhang.bioinformatics.ku.edu/

MUSTER.
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of the sequence-based methods especially for the remote

homologous sequences.25,26

In this work, we try to extend the PPA threading algo-

rithm by including various sequence and structural resour-

ces generated from many other tools, which is called MUS-

TER (MUlti-Source ThreadER). Because we use dynamics

programming (DP)38,39 to search the alignment space, we

only consider the single-body features which can be con-

veniently exploited in DP. They include: (1) sequence pro-

files40; (2) secondary structures prediction41; (3) depth-de-

pendent structure profiles14; (4) solvent accessibility42; (5)

backbone dihedral torsion angles; (6) hydrophobic scoring

matrix.36 Since these features are not entirely independent

of each other (e.g. the structure profile correlates with the

solvent accessibility, and the torsion angle prediction corre-

lates with the secondary structure), we will carefully bal-

ance the weights of the contributions from different resour-

ces based on different training methods. The goal is to sys-

tematically examine how much gain we can obtain in fold

recognition when we combine the different resources of

structure features with the powerful sequence profile–pro-

file alignment methods.

METHOD

Scoring functions

The scoring function of MUSTER for aligning the ith

residue on the query and the jth residue on the template is

Scoreði;jÞ

¼
X20

k¼1

ðPcqði;kÞþPdqði;kÞLtðj;kÞ=2þc1dðsqðiÞ;stðjÞÞ

þc2
X20

k¼1

Pstðj;kÞLqði;kÞþc3ð1�2jSAqðiÞ�SAtðjÞjÞ ;

þc4ð1�2juqðiÞ�utðjÞjÞþc5ð1�2j/qðiÞ�/tðjÞjÞ
þc6MðAAqðiÞ;AAtðjÞÞþc7 ð1Þ

where ‘‘q’’ stands for the query and ‘‘t’’ for the template

proteins. We explain the specific terms as follows.

Sequence profiles

The first term in Eq. (1) is the sequence-derived pro-

files. Pcq(i,k) is the frequency of the kth amino acid at

the ith position of the multiple sequence alignments

(MSA) obtained by a PSI-BLAST search40 of the query

sequence against a nonredundant sequence database

(ftp://ftp.ncbi.nih.gov/blast/db) with an E-value cutoff of

0.001. This is the frequency profile from ‘‘close’’ homolo-

gies. A more ‘‘distant’’ frequency matrix Pdq(i,k) is gener-

ated using a higher E-value cutoff of 1.0. The combina-

tion of both close and distant sequence profiles follows

Skolnick’s idea25,26,43 which helps increase the MUS-

TER alignment sensitivity in different homology area. We

tried to use different weights to the close and distance

profiles and found that the equal weights give the best

performance. In calculating the frequency profiles of

Pcq(i,k) and Pdq(i,k), the Henikoff and Henikoff44

weights are used to reduce the redundancy of aligned

multiple sequences. Moreover, to emphasize the sequence

of more significant PSI-BLAST hits, we give stronger

weights to the sequences of lower E-value than those

of higher E-value. That is, the sequences with E-value of

<10210 are given a weight of 1.0. The weight is linearly

decreased with the logarithm of the E-values until a

weight of 0.5 is used for sequences with E-value of 1.0.

Lt(j,k) is the log-odds profile (Position-Specific Substitu-

tion Matrix in PSI-BLAST) of the template sequence for

the kth amino acid at the jth position. The template log-

odds profile is obtained by the PSI-BLAST search with an

E-value of 0.001. We attempted to combine Lt(j,k) with

the ‘‘distant’’ log-odds profiles with an E-value of 1.0 for

the template sequence too. But it turned out not to

increase the prediction accuracy.

Secondary structure match

The second term compares the predicted secondary

structure sq(i) at the ith position of the query and the

real secondary structures st(j) at the jth position of the

template. d
�
sqðiÞ; stðjÞ

�
equals to 1 if sq(i) 5 st(j) and 21

otherwise. The secondary structure for the query is pre-

dicted by PSI-PRED41 and that for the template is

assigned by the STRIDE program,45 both having three

states of helix, strand, and coil.

Structure profiles

The third term is a depth-dependent structure-derived

profile which is similar as that used by Zhou et al.14 Each

template structure is split into small fragments with nine

residues, which, as seed fragments, are compared by gapless

threading with nine-residue fragments from a set of non-

homologous PDB proteins selected by PISCES.46 The frag-

ments similar as the seed fragment are collected from the

database and used to calculate the frequency profile at each

position of the template, where the similarity is defined by

RMSD and the fragment depth similarity47 between the

seed fragment and the fragments in the database. Following

Zhou and Zhou,14 we collect top 25 database fragments

for each seed fragment. Thus, we have 225 fragment

sequences aligned at each position on the template, where

Pst(j,k) is the frequency of the kth amino acid appearing in

the 225 sequences corresponding to the jth position on the

template. Lq(i,k) is the log-odds profile for the kth amino

acid at the ith position of the query sequence from the

PSI-BLAST search with a E-value cutoff of 0.001.

Solvent accessibility

The fourth term in Eq. (1) computes the match

between the predicted solvent accessibility SAq(i) for the
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ith residue of the query and the real SA value SAt(j) of

the jth residue of the template as assigned by STRIDE.45

To predict SAq(i), we first trained a two-state (exposure/

burial) neural network machine42 on 3365 nonredundant

high-resolution protein structures on the basis of their

sequence profile from PSI-BLAST.40 The maximum SA

value in an extended tripeptide (Ala-X-Ala) is taken from

Ahmad et al.48 Seventeen different SA cutoffs (0.05,

0.1, . . . , 0.85) are used to define the residue exposure sta-

tus in the NN training. The residue exposure index is

SAq(i) 5
P

m51
17 aim/17 where aim is the two-state neural

network prediction of exposure (aim 5 1) or burial (aim
5 0) with the mth SA cutoff for ith residue of the query,

which has a strong correlation with the real value of SA.

For an independent set of 2234 nonhomologous proteins

used by Zhang and Skolnick,49,50 the overall correlation

coefficient between the predicted SAq(i) and the real

exposed area assigned by STRIDE45 is 0.71, while the

same correlation for the widely-used Hopp-Woods51 and

Kyte-Doolittle52 hydrophobicity indices are 0.42 and

0.39, respectively.

Backbone dihedral torsion angles

The fifth (and sixth) term computes the match

between the predicted Psi (and Phi) angle uq(i) (and

/q(i)) for the ith residue of the query and the real Psi

(and Phi) angle ut(j) (and /t(i)) of the jth residue of

templates. Here both uq(i) (and /q(i)) and ut(j) (and

/t(i)) are normalized by 3608 so that the angle values

stay in [20.5, 0.5]. The predicted dihedral angles for

queries are obtained from our SVR-ANGLE program

(Wu and Zhang, submitted), which exploits the support

vector regression (SVR) technique53 (with LIB-SVM54 as

an implementation) to train the dihedral angles on an

input vector of three feature sets: sequence profile, sec-

ondary structure, and solvent accessibility. The output of

SVR-ANGLE is the real value of predicted torsion angles

for each residue. Based on a test of 500 nonredundant

testing proteins, the correlation coefficient between the

predicted Psi (Phi) angles and the experimental Psi (Phi)

angles assigned by DSSP55 is 0.71 (0.63). The average

absolute error for the Psi (Phi) predictions is 0.140

(0.091).

Hydrophobic scoring matrix

The seventh term is a 20 3 20 hydrophobic scoring

matrix taken from Silva,36 which is designed to match

the hydrophobic patterns of query and template. The

idea was inspired by the observation of Gaboriaud

et al.,37 where sequences with similar distribution pat-

terns of the hydrophobic residues (V, I, L, F, Y, W, M)

are often structural homologues. The hydrophobic scor-

ing matrix is assigned as: M(AAq(i), AAt(j)) equals 1

when both AAq(i) and AAt(j) are from the set of hydro-

phobic residues. The matches between all identical resi-

due pairs (except for Pro and Gly that are scored as 1)

are scored as 0.7. All other matches are assigned a null

score.

Dynamic programming

The Needleman-Wunsch38 dynamic programming

algorithm is used to identify the best match between the

query and the template sequences. A position-dependent

gap penalty in the dynamic programming is employed,

that is no gap is allowed inside the secondary structure

regions (helices and strands); gap opening (go); and gap

extension (ge) penalties apply to other regions; ending

gap-penalty is neglected. The shift constant c7 is intro-

duced to avoid the alignment of unrelated residues in the

local regions.

Template ranking scheme

In the original PPA program,30 the templates are

ranked based on a raw alignment score (Rscore) divided

by the full alignment length (Lfull) (including query and

template ending gaps) as shown in Figure 1. In MUS-

TER, we use Rscore/Lpartial as another possible ranking

scheme, where Lpartial is the partial alignment length

excluding query ending gap as shown in Figure 1. A

combined ranking is taken as following: if the sequence

identity of the first template selected by Rscore/Lpartial to

the query is higher than that selected by Rscore/Lfull, we

use the template ranking by Rscore/Lpartial. Otherwise, we

use the template ranking by Rscore/Lfull.

Parameter training

There are overall nine parameters in the MUSTER

algorithm (i.e. c1 to c7, go and ge), which need to be

appropriately tuned. One of the often-used tuning meth-

ods is based on the PROSUP database,56 which includes

127 nonhomologous proteins pairs with the best possible

alignment obtained by the structural alignment program

PROSUP. To train the threading algorithms, one can

tune the parameters by maximizing the number of

threading-aligned residue-pairs which are identical to

that in the structural alignments.14,30,57,58

There are a few protein pairs in the PROSUP databases

which do not have similar topology. The residue-pairs by

the PROSUP structural alignments in this portion of pro-

tein pairs do not correspond to meaningful topology

coincidence and may mislead the trained threading algo-

rithms. Therefore, we remove all PROSUP protein pairs

with a TM-score <0.5 in our training. Here, TM-score

has been defined by Zhang and Skolnick29 to assess the

topological similarity of protein structure pairs with a

score in [0,1] Statistically, a TM-score <0.17 means a

randomly selected protein pair with gapless alignment

taken from PDB; TM-score >0.5 corresponds to the pro-
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tein pairs of similar fold. The statistical meaning of TM-

score is independent of protein sizes.29

Because the number of protein pairs in PROSUP is rel-

atively small (110 with TM-score >0.5) compared with

the number of free parameters in MUSTER, we add a new

set of 190 nonredundant protein structure pairs to our

training set. These 190 pairs are selected with a TM-score

>0.5 from 558 randomly chosen SCOP families,59 where

120 pairs share the same ‘‘class’’ and ‘‘fold’’ but different

‘‘super-family’’ and 70 pairs share the same ‘‘class,’’ ‘‘fold,’’

and ‘‘super-family’’ but different ‘‘family.’’ The protein

length of the 190 protein pairs ranges from 43 to 812 with

sequence identity between any pair is less than 30%. The

sequence identity between any of the 190 proteins pairs

and any of the 110 PROSUP protein pairs is also below

30%. A complete list of the composite 300 protein pairs

are listed at our website: http://zhang.bioinformatic-

s.ku.edu/MUSTER/data1.html with the structural align-

ments of the 190 protein pairs generated by TM-align60

and that of the other 110 pairs taken from PROSUP.56

The second way of training the MUSTER parameters

is to directly run the threading program on a small set of

training proteins and optimize the parameters based on

the overall TM-score of the final threading results. An

advantage of this real-case training is that the target

needs to scan all template proteins in the template library

and the ranking system is naturally trained. For this pur-

pose, we construct another set of 111 nonhomologous

proteins, which include 39 ‘‘Easy’’ targets and 61 ‘‘Hard’’

targets taken from the PDB library (according to the PPA

categorization) plus 11 new fold (NF) targets from the

CASP6 experiment. This training set and the experimen-

tal structures are listed at: http://zhang.bioinformatics.

ku.edu/MUSTER/data2.html.

We use a grid-search technique for both sets of training

data, which split the 9-dimensional parameter space into

lattices and try all the lattice points. In the training set 1,

because the alignment searching on 300 protein pairs is

quick, we use a finer parameter grid system and select the

lattice with the highest average alignment accuracy. The

program with this set of parameters is called MUSTER1.

The final parameters used in MUSTER1 are c1 5 0.65, c2

5 1.10, c3 5 4.49, c4 5 2.01, c5 5 0.59, c6 5 0.20, c7 5
1.00, go 5 6.99, ge 5 0.54. In the training set 2, because

MUSTER needs to scan all templates in the MUSTER

library, the threading time is slower than that in the train-

ing set 1. We therefore use a more coarse-grained lattice

system. After the initial selection, a finer tuning near the

first selected lattice is performed. To avoid the homolo-

gous contamination, we exclude all templates with a

sequence identity higher than 30% to the target proteins.

The lattice with the highest average TM-score is selected.

The program with this set of parameters is called MUS-

TER2. The final parameters used in MUSTER2 are c1 5
0.66, c2 5 0.39, c3 5 1.60, c4 5 0.19, c5 5 0.19, c6 5
0.31, c7 5 0.99, go 5 7.01, ge 5 0.55.

Z-score and target categorization

For the purpose of predicting the quality of threading

alignments, we define a Z-score as

Z � score ¼ ðR0
score � hR0

scoreiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hR02

scorei � hR0
scorei2

q ; ð2Þ

where R0
score is the normalized score Rscore/Lfull or Rscore/

Lpartial as described above; h� � �i indicates the average over

all templates. In Figure 2, we present the data of TM-

score versus Z-score for all 5550 threading alignments by

MUSTER2 (top 50 templates from each of the 111 train

proteins). There is obviously a correlation between TM-

score and Z-score, which allows us to use Z-score as an

indication of the quality of the threading models. If we

use Z-score 5 7.5 as a cutoff of the successful alignment,

the false positive and false negative rates for TM-score

>0.5 are 1.2 and 5.3%, respectively. In the following, we

will define the target as ‘‘Easy’’ (‘‘Hard’’) target if the Z-

score of the first alignment is higher (lower) than 7.5.

Template library

The protein structure templates are taken from the

PDB library with a sequence identity cutoff 5 70%. The

theoretical models and the obsolete structures are dis-

Figure 1
Illustration of the full (Lfull) and partial (Lpartial) alignment lengths used to normalize the threading alignment score (Rscore). Symbols ‘‘-’’, ‘‘.’’ and ‘‘:’’ indicate an

unaligned gap, an aligned nonidentical residue pair and an aligned identical residue pair, respectively. The query and template sequences are taken from 1hroA (first 53

residues) and 155c_ (first 61 residues), respectively, as an illustrative example.
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carded. If a template has multiple domains (e.g. Domains

A and B), both the whole chain and the individual

domains (e.g. Chain AB, Domain A, and Domain B) are

included in the library. We found that the inclusion of

individual domains increases the sensitivity of the MUS-

TER algorithm. As of August 1, 2007, the MUSTER tem-

plate library includes 20,878 protein structures.

RESULTS

Results on training proteins

In Table I, we present the results of three programs

(PPA, MUSTER1, and MUSTER2) on the two training

protein sets. Column 3 is the average alignment accuracy

(Acc) that is defined as fraction of the ‘‘correctly’’ aligned

residue pairs which are the same as the golden-standard

structure alignments. Column 4 is the average alignment

accuracy (Acc4) that is similar as Acc but allows a four-

residue shift when compared with the structure align-

ments. Column 5 is the TM-score of the rank-1 models

together with the RMSD and alignment coverage. Col-

umn 6 is that for the best in top-five models. As

expected, the performance of the algorithms depends on

whether the trained parameters are used. In the training

set 1, MUSTER1 generates more accurate alignments

than both PPA and MUSTER2; in the training set 2, the

TM-score of the alignments by MUSTER2 is higher than

that by both PPA and MUSTER1. A fair comparison has

to be made based on an independent test set of proteins.

Results on testing proteins

Using PDBSELECT (2006 March),61 we select a set of

500 nonhomologous proteins of sequence identity <25%

and with length from 50 to 633, which includes 120(/53/

327) a(/b/ab) proteins. These proteins are also nonho-

mologous to the two sets of training proteins. A list of

the 500 testing proteins and their PDB structures are

available at http://zhang.bioinformatics.ku.edu/MUSTER/

data3.html. For a fair comparison, the template library

(including 20,878 templates) used for PPA is the same as

those for MUSTER, where all the templates with

sequence identity >30% to the query are excluded.

Overall performance

The performance and comparison of PPA and MUS-

TER on the 500 testing proteins are summarized in Table

II. For the first (and the best in top-five) models, MUS-

TER1 identifies template alignments with an average

TM-score of 0.4410 (and 0.4787), which is 2.9% (and

2.3%) higher than 0.4285 (and 0.4680) by PPA. If we use

the parameters trained by threading the 111 proteins,

MUSTER2 identifies even better template alignments

with an average TM-score of 0.4503 (and 0.4830), which

is 5.1% (and 3.2%) higher than that by PPA for the first

(and the best in top-five) models. Based on the TM-

Figure 2
TM-scores of the top 50 threading alignments generated by MUSTER for each of

111 training proteins versus the Z-scores. The vertical line indicates a Z-score

cutoff (5 7.5) to distinguish ‘‘Easy’’ and ‘‘Hard’’ targets and the horizontal line

corresponds to TM-score 5 0.5.

Table I
Performance of PPA and MUSTER on the Training Proteins

Data Methods Acca Acc4
b

TM-score (RMSD/coveragec)

First model Best in Top-5 models

Training Set 1
(300 pairs)

PPA 0.3686 0.6193 0.3887 (11.09/0.817) —
MUSTER1 0.4674 0.7780 0.4549 (10.05/0.893) —
MUSTER2 0.4370 0.7254 0.4365 (10.37/0.873) —

Training Set 2
(111 proteins)

PPA — — 0.4865 (7.95/0.884) 0.5121 (7.42/0.892)
MUSTER1 — — 0.4957 (8.00/0.915) 0.5277 (7.20/0.920)
MUSTER2 — — 0.5117 (7.54/0.910) 0.5384 (7.05/0.911)

aAcc: Fraction of the correctly aligned residue pairs in threading that is identical to that by structural alignments.
bAcc4: Fraction of the threading-aligned residue pairs with a shift �4 residues away from that by structural alignments.
cCoverage: The number of aligned residues/target protein length.
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score, MUSTER2 certainly outperforms MUSTER1. Espe-

cially, the average alignment coverage of MUSTER2 is

lower than MUSTER1 although the alignments of higher

coverage tend to have higher TM-score.29 This means

that the higher TM-score in MUSTER2 is because of

more accurate residue alignments. One reason for the

better training in MUSTER2 than MUSTER1 is that the

number of protein pairs in the second training set (111

3 20,878) is much larger than that of the first training

set (300). Although the first training set allows a quick

and much finer grids training, it could be over-trained

by the small set of protein pairs especially when a num-

ber of parameters are trained. The second reason may be

that the training process of the first training method

does not consider the ranking scheme because there is

only one template for each protein pair, while the rank-

ing is naturally trained in the second training method. In

the following, our analysis will only focus on the result

of MUSTER2 (or MUSTER) unless explicitly mentioned.

The higher TM-score of MUSTER over PPA is because

of both longer alignment coverage and the more accurate

alignment as indicated by the smaller average RMSD.

The difference between MUSTER and PPA is examined

by the Wilcoxon signed rank test with a P-value < 1.0 3

Table II
Performance of PPA and MUSTER on the Testing Proteins

Data
No. of
targets

Homology
cutoff Methods

TM-score (RMSD/Coverage)

First model Best in top-5 models

All targets 500 Cutoff-1a PPA 0.4285 (10.10/0.849) 0.4680 (9.15/0.863)
MUSTER1 0.4410 (10.33/0.904) 0.4787 (9.37/0.903)
MUSTER2 0.4503 (9.87/0.885) 0.4830 (9.14/0.888)

Cutoff-2b PPA 0.3423 (11.95/0.824) 0.3824 (10.71/0.835)
MUSTER1 0.3542 (12.15/0.892) 0.3996 (10.93/0.889)
MUSTER2 0.3638 (11.53/0.865) 0.4022 (10.56/0.869)

''Easy''
targets

203 Cutoff-1 PPA 0.6430 (4.86/0.895) 0.6734 (4.52/0.902)
MUSTER2 0.6571 (4.70/0.902) 0.6795 (4.49/0.909)

93 Cutoff-2 PPA 0.5933 (5.26/0.868) 0.6209 (5.03/0.873)
MUSETR2 0.6065 (5.04/0.878) 0.6267 (4.95/0.878)

''Hard''
targets

255 Cutoff-1 PPA 0.2564 (14.49/0.826) 0.3040 (12.98/0.841)
MUSTER2 0.2842 (14.09/0.883) 0.3242 (13.09/0.885)

365 Cutoff-2 PPA 0.2629 (14.13/0.816) 0.3075 (12.52/0.826)
MUSTER2 0.2866 (13.65/0.867) 0.3295 (12.42/0.871)

aHomology Cutoff 1: excluding templates with sequence identity >30% to the query.
bHomology Cutoff 2: excluding templates with sequence identity >20% to the query or detectable by PSI-BLAST with an E-value < 0.05.

Figure 3
TM-score comparison between PPA and MUSTER for the first threading models of 500 nonhomologous testing proteins. Circles represent the models from the ‘‘Easy’’

targets and crosses indicate those from the ‘‘Hard’’ targets. (a) Homology Cutoff-1 excluding templates with sequence identity to targets >30%; (b) homology Cutoff-2

excluding templates with sequence identity >20% or detectable by PSI-BLAST with an E-value > 0.05.
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10216 for the first model and a P-value < 1.0 3 1026 for

the best in the top-five models. On 92 out of 500 pro-

teins, MUSTER generates the first threading alignment

with a TM-score 0.05 higher than PPA. Only on 24 tar-

gets, PPA does better than MUSTER with a TM-score

difference >0.05. A head-to-head comparison of the first

template alignments by PPA and MUSTER is presented

in Figure 3(a) where there are obviously more points

above the diagonal line which indicates that in more

cases MUSTER identifies a better template alignment

than PPA.

In Figure 4, we show a typical example from the target

‘‘1eq1A’’ where MUSTER does better than PPA. In this

example, the first model identified by MUSTER has a

TM-score 5 0.71 with the template structure from

‘‘1aep_’’; the first model by PPA has a TM-score 5 0.19

with an incorrect template structure from ‘‘1av1A.’’

Although the correct template ‘‘1aep_’’ is ranked as the

3rd model in PPA, the alignment is still not correct with

a TM-score 5 0.25 [Fig. 4 (b)]. Here, both the target

‘‘1eq1A’’ and the template ‘‘1aep_’’ are a-helix proteins

and the secondary structure match is not the main

driven force for the correct alignment. Actually, in PPA

alignment, most aligned residue pairs are helix–helix

matches but there is about an 11-residue shift from the

correct alignment (see the lower panel of Fig. 4). From

the 3D superposition of the threading model and native

structure shown in Figure 4(b), the orientation of C-ter-

minal tail is mismatched and there are big gaps between

residues 27–45 and 90–107. Second, the sequence identity

between ‘‘1eq1A’’ and ‘‘1aep_’’ is low (19%) and the con-

tribution from the sequence profile alignment is small as

well. When we specifically check the terms of the align-

ment path, the values of the seven terms for MUSTER

are: 29.4 (sequence profiles), 72.6 (secondary structure

match), 227.1 (structured profiles), 169.1 (solvent acces-

sibility), 24.2 (Psi angle), 24.9 (Phi angle), and 8.9

(hydrophobic scoring matrix). The values of the two

terms for PPA are 143.05 (sequence profiles) and 45.5

(secondary structure match) respectively. Obviously the

main contribution to the correct alignments is from the

new structure terms (solvent accessibility and dihedral

angles in this example—the sum of new structural terms

is much larger than the profile and secondary structure

matches), which explains the reason of improvement of

MUSTER over PPA by introducing additional features.

‘‘Easy’’ versus ‘‘Hard’’ targets

In the lower part of Table II, we split the targets into

‘‘Easy’’ and ‘‘Hard’’ targets. Here we define an ‘‘Easy’’ tar-

get when both MUSTER and PPA categorize it as ‘‘Easy,’’

that is Z-score (MUSTER) >7.5 and Z-score (PPA) >7.0;

a ‘‘Hard’’ target is defined when both MUSTER and PPA

categorize them as ‘‘Hard,’’ that is Z-score (MUSTER)

<7.5 and Z-score (PPA) <7.0. There are thus overall

203/255 ‘‘Easy’’/‘‘Hard’’ targets. The other 42 targets with

nonidentical categorizations by PPA and MUSTER are

not considered here.

For the ‘‘Easy’’ targets, the average TM-score of MUS-

TER is 0.6571 (0.6795) for the first (the best in top-five)

models, which is 2.2% (0.9%) higher than 0.6430

(0.6734) by PPA. The percentage of the improvements is

smaller than the overall testing set (5.1 and 3.2%, respec-

tively) mainly because both the PPA and MUSTER align-

ments are closer to the perfect alignments and therefore

there is less room for improvements. The average TM-

score of the structural alignment identified by TM-

align60 for the first pair of target/template is 0.6930,

which sets an upper bar where the best threading align-

ment can go. However, the improvement is still statisti-

cally significant as examined by the Wilcoxon signed

rank test with a P-value < 1.0 3 1027 for the first model

and a P-value < 1.0 3 1026 for the best in the top-five

models.

For the ‘‘Hard’’ targets, the average TM-score of MUS-

TER is 0.2842 (0.3242) for the first (the best in top-five

Figure 4
The threading results for ‘‘1eq1A’’ by MUSTER and PPA. (a) The first

threading model from the template ‘‘1aep_’’ by MUSTER; (b) The third

threading model from the template ‘‘1aep_’’ by PPA. The upper part of the

figure shows the superposition of 3D models to native structure. Thin line

denotes Ca backbone of the native structure and thick line is that of threading

models. Blue to red color runs from N- to C-terminus. The 3-D structures are

plotted using PyMOL software.62 The lower part of the figure shows the 1D

alignment of the secondary structure elements by MUSTER and PPA,

respectively. The wave lines indicate the a-helix regions and the straight lines

the coil regions. The black color represents the continuous regions with residues

appearing and the green color indicates the gap regions.
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models), which is 10.8% (6.6%) higher than 0.2564

(0.3040) by PPA. This improvement is higher than the

overall testing set mainly because the performance of

PPA in this set is much worse than the best structural

alignment and there is a larger room for improvement.

The TM-score by TM-align for the first target-template

pairs is 0.3742. Obviously, even after the improvement,

the average quality of MUSTER performance is consider-

ably lower than the best structure alignment. This will be

the major category of proteins which MUSTER has to

deal with in future developments. Statistically, the

improvement of MUSTER over PPA in the ‘‘Hard’’ tar-

gets is by Wilcoxon signed rank test with a P-value < 1.0

3 1029 for the first model and a P-value < 1.0 3 1029

for the best in top-five models.

Effect of using stringent cutoffs

Although we excluded the homologous templates using

a sequence identity cutoff >30% to the target in the

above testing as many previous studies did,26,49,50,63

there are still some relatively ‘‘trivial’’ targets where ho-

mologous templates can be detected by PSI-BLAST.40

Here, we use a second and more stringent homology cut-

off where all threading templates with a sequence identity

>20% to targets or can be detected by PSI-BLAST with

an E-value < 0.05 are removed, which is called Cutoff-2

where the former one is referred to Cutoff-1.

The overall performance of PPA and MUSTER under

Cutoff-2 is listed in Lines 6–8 of Table II. As expected,

the average TM-scores of both PPA and MUSTER models

are decreased compared with Cutoff-1. However, the av-

erage TM-score 0.3638 (0.4022) by MUSTER2 for the

first (the best in top-five) model is still 6.3% (or 5.2%)

higher than that of 0.3423 (0.3824) by PPA. The data is

consistent with the result of Cutoff-1 in that MUSTER2

outperforms MUSTER1. The slightly larger increasing of

MUSTER over PPA in Cutoff-2 is partly due to the fact

that the effect of profile–profile match is somewhat

reduced by the removing of the PSI-BLAST detectable

templates which is the major driving force in the PPA

alignment. The overall improvement from PPA to MUS-

TER in Cutoff-2 is examined by the Wilcoxon signed

rank test with a P-value < 1.0 3 10213 for the first

model and a P-value < 1.0 3 10218 for the best in top-

five models.

In Figure 3(b), we present a head-to-head comparison

of MUSTER and PPA under Cutoff-2. Again, there are

more targets with a higher TM-score by MUSTER than

that by PPA: In 105 out of 500 proteins, the TM-score

difference is larger than 0.05 for MUSER over PPA; only

in 34 cases, PPA does better than MUSTER with a TM-

score difference larger than 0.05.

Under the Cutoff-2, there are respectively 93 ‘‘Easy’’

targets and 365 ‘‘Hard’’ targets. The comparison of PPA

and MUSTER in both two categories is listed in Lines

11–12, and 15–16 of Table II. Both the first model and

the best in top-five models of MUSTER have a higher av-

erage TM-score than that of PPA in the two sets, which

demonstrates the robustness of the improvement of the

MUSTER algorithm.

CONCLUSIONS

We develop a new threading program MUSTER by

extending the secondary structure enhanced sequence

profile-profile alignment algorithm (PPA27). To improve

PPA, we add four additional structure-derived features to

enhance the power of fold recognitions: (1) depth-de-

pendent structure profiles14; (2) neural-network-based

solvent accessibility predictions42; (3) SVR-based back-

bone torsion angle predictions; (4) hydrophobic scoring

matrix.36 These single-body features can be easily imple-

mented in the dynamic programming procedure. We use

several techniques to increase sensitivity of the threading

alignments by combining both close and distant profiles,

and weighting the PSI-BLAST sequences with the E-val-

ues. The final templates are ranked by the combination

of two normalizing schemes.

We test two schemes to optimize the MUSTER param-

eters. The first is using 300 nonhomologous protein

structure pairs where the goal is to maximize the per-

centage of aligned residue pairs that is identical to that

in structural alignments.56,60 The second is running

MUSTER on 111 nonhomologous training targets and

maximizing the TM-score of the final threading models.

Although the first scheme allows a finer grid search of

the parameters, the final result on the 500 independent

proteins shows that the second scheme works better. The

reason may be due to the fact that the number of the

scanned alignment pairs in the second scheme is larger

than the first one, which helps avoid the over-training of

the parameters. The ranking of templates is also trained

in the second scheme.

We test MUSTER on 500 nonhomologous proteins

with two levels of homology cutoffs. In the first cutoff,

we exclude all templates with sequence identity >30%.

The average TM-score of the first rank models identified

by MUSTER is about 5.1% higher than that by PPA. In

92 cases, the TM-score improvement by MUSTER over

PPA is larger than 0.05 while only in 24 cases PPA does

so over MUSTER. The improvement mainly occurs for

the ‘‘Hard’’ targets where the average TM-score increase

by 10.8%. For the ‘‘Easy’’ targets, the TM-score increase

is 2.2%. This is partly because the alignments of ‘‘Hard’’

targets in PPA are less close to the perfect alignment and

therefore there is a larger space to improve. Second, for

most of the ‘‘Hard’’ targets the alignments are harder to

be detected by the simple sequence profile–profile com-

parison and additional structure information as incorpo-

rated in MUSTER helps increase the alignment quality.
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In the second more stringent cutoff, we exclude tem-

plates with a sequence identity >20% to the targets or

detectable by PSI-BLAST with an E-value <0.05. The av-

erage alignment quality of the threading is worse than

the first cutoff. But the average TM-score improvement

of MUSTER over PPA is 6.3%, which demonstrates the

robustness of the improvement. The total CPU time of

running MUSTER is similar as PPA, that is, about

30 min to scan a medium size protein (200 residues)

through a library of 20,878 templates.

Here, we note that we do not intend to compare

MUSTER with many other threading algorithms rather

than benchmark it strictly with PPA. One reason is that

the threading performance is usually sensitive to the tem-

plate library which varies considerably when using differ-

ent pair-wise sequence cutoff and at different updating

time. The interpretation of threading results of the algo-

rithms from different groups may be misleading because

of the different template libraries they are based on. By

comparing MUSTER with PPA, we are using exactly the

same template library and based on the same homology

cutoffs. Therefore, the improvement should correspond

purely to the progress of the algorithm. Second, the sec-

ondary structure bounded sequence profile–profile align-

ment algorithm, as used in PPA, represents a large set

of popular threading algorithms7–14 in the literature.

The performance of this type of algorithms has been

well benchmarked in previous blind and meta-server

experiments.31,32,34,64 In a recent local meta-server

development, we show that the performance of PPA is

comparable to the best single threading algorithms

used in LOMETS30 which includes FUGUE,15

HHSEARCH,18 PROSPECT2,23 SAM-T02,65SPARKS2,13

SP3,14 PAINT,30 although the template libraries used in

these method are not the same as PPA. We also obtained

the newest version of the HHpred-1.5.0 from Soding,18

which is one of the best-performed single server in

CASP7 server section. The alignment results of PPA and

HHpred are quite comparable with an average TM-score/

RMSD/Coverage of 0.4941/7.34/88% and 0.4890/7.66/

86%, respectively (J. Soding, private communication).

These data may give an approximate and indirect com-

parison of the MUSTER algorithm with other methods.

The on-line MUSTER server is freely available to aca-

demic users at our website: http://zhang.bioinformatics.

ku.edu/MUSTER.
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