
Chapter 11: Genome-wide protein structure prediction 
 

Srayanta Mukherjeea,b, Andras Szilagyib,c, Ambrish Roya,b, Yang Zhanga,b* 
 

aCenter for Computational Medicine and Bioinformatics, University of Michigan, 
100 Washtenaw Ave, Ann Arbor, MI 48109, USA  

bCenter for Bioinformatics, University of Kansas, 2030 Becker Drive, Lawrence, 
KS 66047, USA 

cInstitute of Enzymology, BRC, Hungarian Academy of Sciences, Karolina út 29, 
H-1113 Budapest, Hungary 

 
Abstract 

 
The post-genomic era has witnessed an explosion of protein sequences in the 
public databases; but this has not been complemented by the availability of 
genome-wide structure and function information, due to the technical difficulties 
and labor expenses incurred by existing experimental techniques. The rapid 
advancements in computer-based protein structure prediction methods have 
enabled automated and yet reliable methods for generating 3D structural models 
of proteins. Genome-scale structure prediction experiments have been conducted 
by a number of groups, starting as early as in 1997, and some noteworthy efforts 
have been made using the MODELLER and ROSETTA methods. Along another 
line, TOUCHSTONE was used to predict the structures of all 85 small proteins in 
the M. genitalium genome, which established template-refinement based structure 
prediction as a practical approach for genome-scale experiments. This was 
followed by the development of TASSER and I-TASSER algorithms which use a 
combination of various approaches for threading, fragment assembly, ab initio 
loop modeling, and structural refinement to predict the structures. A successful 
structural prediction for all medium-sized open reading frames (ORFs) in the E. 
coli genome was demonstrated by this method, achieving high-accuracy models 
for 920 out of 1360 proteins. GPCRs are an extremely important class of 
membrane proteins for which only very few structures are available in the PDB. 
TASSER was used to predict the structures of all 907 putative GPCRs in the 
human genome, and the high accuracy confirmed by newly solved GPCR 
structures and recent blind tests have demonstrated the usefulness and robustness 
of the TASSER/I-TASSER models for the functional annotation of GPCRs. 
Recently, the I-TASSER protein structure prediction method has been used as a 
basis for functional annotation of protein sequences. The increasing popularity 
and need for such automated structure and function prediction algorithms can be 
judged by the fact that the I-TASSER server has generated structure predictions 
for 35,000 proteins submitted by more than 8,000 users from 86 countries in the 
last 24 months. The success of these modeling experiments demonstrates 
significant new progress in high-throughput and genome-wide protein structure 
prediction. 
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11.1 Introduction 
 The post-genomic era has witnessed an explosion of sequence-level 
information for proteins which, however, has not been complemented by the 
availability of structural information, mainly due to the inherent limitations of 
current experimental techniques for determining the protein structure. The 
increasing gap between the sequence and structure space (shown in Figure 1), 
along with the awareness that the three dimensional (3D) structure of a protein is 
closely linked to its biological function (Lopez et al. 2007), has prompted the 
structural genomics (SG) project to increase the throughput of experimental 
structure determination  (Baker et al. 2001 ; Gerstein et al. 2003 ; Chandonia et 
al. 2006) and to provide a framework for inferring the biological function  
(Skolnick et al. 2000 ; Aloy et al. 2001) of proteins. While SG aims to structurally 
characterize the protein universe by an optimized combination of experimental 
structure determination and comparative modeling (CM), 3D structures of at least 
16,000 optimally selected proteins would be required in order for CM to cover 
approximately 90% of protein domain families (Vitkup et al. 2001), and at the 
current rate it appears that this goal can only be achieved in ~10 years  (Zhang 
2009b). This underscores the need and the feasibility for genome-wide protein 
structure prediction by CM and other computational methods, so that 3D 
structural models can be built and provide insight into molecular mechanisms, 
thereby promoting better understanding of physiological processes and biological 
systems  (Wiley 1998). 

 

Figure 1.  Plot showing the rise in the number of protein sequences in databases compared to the 
rise in the number of structures in the PDB (Berman et al. 2000) by year. 
 



Rapid strides have been taken in the field of protein structure prediction 
from amino acid sequence using computational methods (Zhang 2008b). The 
obvious advantage of computational methods is their speed and low cost, making 
genome-scale structure prediction and functional annotations a reality. Protein 
structure prediction methods can be divided into three main categories based on 
the approach that is adopted (Zhang 2008b): 1) comparative or homology 
modeling (Sali et al. 1993 ; Fiser et al. 2000 ; Marti-Renom et al. 2000) 2) 
threading or fold recognition (Bowie et al. 1991 ; Jones et al. 1992 ; Xu et al. 
2000 ; Skolnick et al. 2004b ; Wu et al. 2007b) and 3) ab initio or de novo 
methods (Kolinski et al. 1994 ; Simons et al. 1997 ; Liwo et al. 1999 ; Kihara et 
al. 2001 ; Zhang et al. 2003 ; Bradley et al. 2005 ; Klepeis et al. 2005 ; Oldziej et 
al. 2005 ; Wu et al. 2007a). 
 In comparative modeling (CM), the protein structure is constructed by 
matching the sequence of the protein of interest (query protein) to an 
evolutionarily related protein with a known structure (template protein) in the 
PDB. Thus, a prerequisite for comparative modeling technique is the presence of 
a homologous protein in the PDB (Berman et al. 2000) library. For proteins with 
>50% sequence identity to their templates, models built by CM techniques can 
have up to 1 Å RMSD from the native structure for the backbone atoms. For 
proteins which have 30 to 50% sequence identity with their template, the models 
often have ~85% of their core regions within an RMSD of 3.5 Å from the native 
structure, with errors mainly in loop regions. When the sequence identity drops 
below 30% (in the twilight zone (Rost 1999)), modeling accuracy sharply 
decreases because of substantial alignment errors and lack of significant template 
hits. Also, by definition, models built by CM usually have a strong bias and are 
closer to the template structure than the native structure of the target protein 
(Tramontano et al. 2003 ; Read et al. 2007). 
 Threading or fold recognition is similar to CM modeling in the sense that 
it also searches a structure library to identify a known structure which would “best 
fit” a given query sequence; however, an evolutionary relationship (homology) 
between the query and the template is not a prerequisite in this case. These 
“sequence to structure” alignment approaches usually employ a wide range of 
scoring functions to find the best alignment, and may rely on distance dependent 
potentials (Sippl et al. 1992), predicted secondary structure (McGuffin et al. 
2003), solvent accessibility (Zhang et al. 1997 ; Chen et al. 2005a), and other 
predicted structural features. Most of the successful threading approaches use 
scores combining sequence features and predicted structural information 
(Skolnick et al. 2004b ; Zhou et al. 2005 ; Wu et al. 2008b), with a search engine 
of either dynamic programming (Needleman et al. 1970 ; Smith et al. 1981) or a 
Hidden Markov model (Karplus et al. 1998 ; Soding 2005) for remote homology 
detection and fold recognition. 
 Ab initio or de novo methods originally referred to the approaches purely 
based on physicochemical properties; however, some of the contemporary 
algorithms in this category do use evolutionary and knowledge-based information 
to collect spatial restraints or to detect structural fragments to assist structural 
assembly. However, by definition, ab initio methods are not dependent on the 



presence of known structures which are sequentially or structurally similar to a 
given query sequence. The guiding principle of this approach is the Anfinsen 
hypothesis (Anfinsen 1973), which states that the native structure of the protein 
lies at the global energy minimum of the configurational space. Therefore, ab 
initio approaches try to fold a given protein based on various force fields via 
conformational search. Though some notable developments have been made in 
this field (Kolinski et al. 1994 ; Simons et al. 1997 ; Liwo et al. 1999 ; Kihara et 
al. 2001 ; Zhang et al. 2003 ; Bradley et al. 2005 ; Klepeis et al. 2005 ; Oldziej et 
al. 2005 ; Wu et al. 2007a), predicting three-dimensional structure of proteins 
longer than 150 amino acids is still an unsolved problem due to the inaccuracy of 
available force fields and the bottlenecks arising out of insufficient 
conformational search. 
 Significant progress has been achieved in developing composite structure 
predictions which combine various approaches to comparative modeling, 
threading and ab initio folding. The Threading ASSEmbly Refinement (TASSER) 
(Skolnick et al. 2004a) and Iterative Threading ASSEmbly Refinement (I-
TASSER) (Wu et al. 2007a ; Zhang 2007, 2008a) methods are notable examples 
in this category.  

In what follows, we give an overview of the field with a focus on genome-
wide automated protein structure prediction. We start with a discussion of the 
early attempts at large-scale structure prediction. Then, we provide an 
introduction to the TASSER and I-TASSER algorithms, followed by a review of 
the genome-scale structure prediction experiments conducted using these 
composite methods. Lastly, we conclude the chapter with comments on the 
usefulness of genome-wide structure prediction and current challenges in the field. 
Due to the space limit of this chapter, we are not aiming at providing an 
exhaustive list of efforts made in this important field. 
 
11.2 Pioneering efforts in genome-scale structure predictions 
 One of the earliest attempts aiming at structure prediction on a genomic 
scale was carried out by Fischer and Eisenberg (1997) (Fischer et al. 1997) on the 
Mycoplasma genitalium genome (Fraser et al. 1995). The primary goal of the 
experiment was to assign a fold to each of the 486 putative proteins in the M. 
genitalium genome. The method used in this experiment was protein fold 
recognition using threading. Thus, each target sequence was threaded onto 
structures in a library of representative protein structures obtained from the PDB 
(Berman et al. 2000), using both sequence-profile and profile-profile alignment to 
find a template protein in the database of known structures that presumably has a 
similar structure to the target protein or at least shares a structural motif with it. 
Using this procedure, a fold could be assigned with high confidence to 22% of the 
proteins in the genome. At the time of the experiment, the threading template 
library included only 1,632 entries at a 50% pair-wise sequence identity cutoff. 
 A genome-scale structure prediction of proteins in the Saccharomyces 
cerevisiae genome was undertaken by Sanchez and Sali (1998) (Sanchez et al. 
1998), using comparative protein structure modeling. The program MODELLER 
(Sali et al. 1993 ; Sanchez et al. 1997), which models an unknown protein 



structure based on the satisfaction of spatial restraints derived from homologous 
proteins of known structure, was used for all three steps necessary to perform 
comparative modeling, namely: sequence-structure alignment, building a model 
based on the restraints from templates, and evaluation of the quality of the model. 
Structure modeling was carried out on 6,218 ORFs, using a template library 
consisting of 2,045 proteins at a 95% pair-wise sequence identity cutoff. Models 
were generated for substantial segments of 1,071 ORFs (17.2%) from the 
complete genome. In contrast, only 40 proteins had been solved experimentally at 
that time.  
 Taking it one step further, Sanchez et al. carried out a “multi-genomic” 
scale comparative structure modeling for approximately 17,000 proteins from 10 
complete genomes and all sequences from Arabidopsis thaliana and Homo 
sapiens (Sanchez et al. 2000) available at that time. The models were generated 
using the MODPIPE pipeline software (Sanchez et al. 1998), an integration of 
PSI-BLAST (Altshucl et al. 1997) for threading with MODELLER (Sali et al. 
1993), and were deposited in the MODBASE database. The MODPIPE pipeline 
thus established a state-of-the-art automated procedure capable of performing 
large-scale protein structure modeling that could be used for various biological 
applications. 
 TOUCHSTONE (Kolinski et al. 1994 ; Kihara et al. 2001 ; Zhang et al. 
2003), a Monte Carlo simulation based method built on a reduced knowledge-
based force field combined with secondary structure prediction and threading-
based tertiary structure restraints, was used for the genome-scale prediction of all 
small proteins (those shorter than 150 amino acids) in the Mycoplasma genitalium 
genome (Kihara et al. 2002), demonstrating the feasibility of large-scale 
prediction experiments using ab initio based modeling methods. Since the 
structure of none of the 85 small proteins in the genome had been solved 
experimentally at that time, it was not possible to compare the models with the 
native structures. However, as judged based on TOUCHSTONE benchmarking 
results on a 65-protein test set, the results were promising. Out of the 85 proteins, 
the threading program PROSPECTOR (Skolnick et al. 2001) was able to produce 
significant threading hits for 34 proteins, all of which were then used to produce 
reliable full-length models. For 29 out of the remaining 51 proteins without any 
significant threading hits, the Monte Carlo simulations converged to five or fewer 
clusters. Based on a simple application of the statistics obtained from the 
benchmarking study, it was concluded that the models were reliable for 24 of 
these 29 proteins. Thus, the total number of proteins with reliable models was 
estimated to be 58, or 68% of all the target proteins in the study.  
 Simons et al. conducted a large-scale test of the ROSETTA structure 
prediction method (Simons et al. 1997 ; Bradley et al. 2005) by predicting the 
structures of 150 proteins with sizes up to 150 amino acids (Simons et al. 2001). 
The protein set included 30 small (<50 residues), 127 medium-size (50 to 100 
residues), and 3 relatively large proteins (>100 residues). Models with an RMSD 
≤ 5Å were produced for 80% of the small proteins and 73% of the medium-size 
proteins. For the rest of the proteins, including the 3 large ones, the models had an 
RMSD between 5 to 7 Å.  



In a more recent study, Malmstrom et al. carried out a superfamily 
assignment and protein structure prediction experiment on the 6,238 ORFs in the 
Saccharomyces cerevisiae genome (Malmstrom et al. 2007). The sequences were 
parsed into 14,934 structural domains, 47% of which showed detectable similarity 
to homologs or analogs of known structure. From the remaining 53% of the 
domains, the ones shorter than 150 residues and lacking predicted transmembrane 
helices were selected for ab initio structure prediction using ROSETTA. For each 
of the selected 3,338 domains, 10,000 models were generated by ROSETTA and 
then condensed to 30 representative models by clustering. This large-scale 
computational study was an expensive effort as it required 1,350 CPU years. The 
resulting structural data were integrated with existing experimental data on the 
function, process, and localization of the domains in order to assign them to 
SCOP superfamilies; an assignment was made for 581 domains. In addition, 
structural annotations were assigned to 7,094 domains with structures predicted 
using fold recognition or homology modeling. The genome-wide predictions and 
superfamily assignments produced by this ground-breaking study can serve as a 
basis for the generation of experimentally testable hypotheses about the structure-
function relationships of a large number of yeast proteins.  
 
11.3 TASSER Methods  
 TASSER is a composite structure prediction method developed in the 
Skolnick lab, (Skolnick et al. 2004a ; Zhang et al. 2004c) involving a hierarchical 
combination of template search by threading, followed by the assembly and 
rearrangement of continuous fragments excised from the templates. The protein 
conformation is specified in an on-and-off-lattice system with energy function 
integrating a number of structural restraints which are predicted from the 
threading templates. The on-and-off-lattice-based conformational search is used 
to generate thousands of conformations which are then subjected to iterative 
structural clustering for the selection of the final models (Zhang et al. 2004b).  
 The TASSER predictions begin by taking the amino acid sequence as 
input, which is then subjected to “sequence-structure alignment” or threading by 
PROSPECTOR_3 (Skolnick et al. 2004b) against a comprehensive threading 
library. The threading process utilizes close and distant sequence profiles and 
predicted secondary structure information from PSIPRED (Jones 1999) to find the 
best match. The alignment is performed using the Needleman-Wunsch dynamic 
programming algorithm (Needleman et al. 1970), and the raw alignment score 
and the alignment length are used to obtain the statistical significance (Z-score) of 
the alignment. The alignments on different templates are ranked by the Z-score, 
which is also used to classify the query protein into “easy”, a “medium” or a 
“hard”. The “hard” category basically means that no good threading template is 
identified in the library, and the structure will have to be largely predicted by an 
“ab initio” method.  
 The templates found by the threading process are divided into 
continuously aligned (>5 residues) and gapped regions, and placed onto the CAS 
(C-Alpha and Side-chain center of mass) on-and-off-lattice model. The local 
structure of the aligned regions remains unchanged during the simulation; their 



Cα atoms are excised from the template and placed off-lattice in order to keep the 
fidelity of the structures. In the gapped or ab initio regions, Cα atoms are placed 
on the lattice points with a grid of 0.87 Å. The side-chain centers of mass are off-
lattice for all regions. The gapped regions are first filled up using a random walk 
of Cα-Cα bond vectors to generate a full-length model which is subsequently 
subjected to the parallel hyperbolic Monte Carlo sampling (Zhang et al. 2002). 
Once again the CAS model differentiates between the on- and off-lattice atoms 
with regard to the movements they are subjected to. The off-lattice atoms are 
subjected to rigid-body translation and rotation. Care is taken to ensure that the 
acceptance probability of a movement is approximately the same for different 
fragment lengths, implemented by normalizing the amplitude of movement by the 
length of the fragment. On the other hand, on-lattice atoms are subjected to two- 
to six-bond movements and sequence shifts of multiple bonds. A pictorial 
representation of the CAS model is shown in Figure 2.  

 

Figure 2: A schematic representation of the CAS on- and off-lattice model for a fragment of a 
polypeptide chain, with each residue being represented by the Cα atom and side-chain center of 
mass. The Cα atoms of the unaligned residues are placed on-lattice and subjected to 2-6 bond 
movements and multi-bond shifts. The Cα regions of the aligned regions are subjected only to 
rigid body rotations and translations. All side-chain atoms are off-lattice. 
 

The TASSER energy function integrates three different classes of energy 
terms. The first term consists of a number of knowledge-based statistical potential 
derived from the PDB (Berman et al. 2000), including long-range side-chain pair 
interactions, hydrogen-bond potential terms, hydrophobic interaction and local Cα 



correlations. The second class includes the propensity of an amino acid to assume 
a particular secondary structure as predicted by PSIPRED (Jones 1999), while the 
third class includes protein specific tertiary structure contact restraints and a 
distance map calculated by PROSPECTOR_3 from the generated threading 
templates. The decoys generated from the TASSER sampling are finally subjected 
to iterative structural clustering by SPICKER (Zhang et al. 2004b) to rank the 
decoys and extract near-native final models. 
 
11.4 I-TASSER Methods 

I-TASSER is an extension of the TASSER methodology, which is 
implemented by running repeated iterations of the TASSER Monte Carlo 
sampling (Wu et al. 2007a). A schematic overview of the I-TASSER 
methodology is shown in Figure 3. The main new developments in I-TASSER 
compared to TASSER are: (a) LOMETS is used to extract spatial restraints from 
multiple threading algorithms (Wu et al. 2007b); (b) sequence-based contact 
predictions from SVMSEQ guide the ab initio simulations (Wu et al. 2008a ; Wu 
et al. 2009); (c) REMO is used to refine the hydrogen-binding network of reduced 
models (Li et al. 2009); (d) iterative TASSER reassembly (Wu et al. 2007a); (e) 
integration of structure-based functional annotations. 

 

Figure 3. A schematic diagram of the I-TASSER (Wu et al. 2007a ; Zhang 2007, 2008a, 2009a) 
structure and function prediction protocol. Templates for the query protein are identified by 
LOMETS (Wu et al. 2007b), which provides template fragments and spatial restraints. The 
template fragments are then assembled by parallel hyperbolic Monte Carlo simulations (Zhang et 
al. 2002). The conformations generated during the simulation are clustered using SPICKER 
(Zhang et al. 2004b), in order to find the structure with the lowest free energy. As an iterative 
strategy, the cluster centroids are then subjected to second round of simulation with the purpose of 
refining the structure and removing clashes. The final all-atom models are generated by REMO 
(Li et al. 2009) through the optimization of hydrogen-bonding networks. Functional homologs 
(PDB structures that have an associated EC number/GO term/known binding site) of the final 
models are identified using both global structural search (Zhang et al. 2005b) and local structure 
alignment programs which aim at finding matches between the binding/active sites of the 
predicted structure and templates with known function. 



 
 The starting templates in I-TASSER are collected by LOMETS (Wu et al. 
2007b), a meta-threading server combining 9 state-of-the-art threading algorithms: 
FUGUE (Shi et al. 2001), HHsearch (Soding 2005), MUSTER (Wu et al. 2008b) 
PROSPECT2 (Xu et al. 2000), PROSPECTOR3 (Skolnick et al. 2004b) SAM-
T02 (Karplus et al. 1998), SPARKS2 (Zhou et al. 2004) SP3, (Zhou et al. 2005) 
and PPA (Wu et al. 2007b). On average, as tested on a benchmark set of 620 non-
homologous proteins, the threading alignment found by LOMETS outperforms 
the best individual threading programs, with a TM-score increase of at least 8%. 
 The new potential terms that have been incorporated in I-TASSER include 
the predicted accessible surface area (ASA) (Chen et al. 2005a ; Wu et al. 2007a) 
and sequence-based contact predictions (Wu et al. 2008a). Both energy terms 
have been derived and optimized using machine learning methods. The overall 
correlation between the actual exposed area as calculated by STRIDE (Frishman 
et al. 1995) and that predicted by a neural network is 0.71, based on a test on 
2,234 non-homologous proteins. In the latest version of I-TASSER (Zhang 
2009a), the sequence-based pairwise residue contact information from SVMSEQ 
(Wu et al. 2008a), SVMCON (Cheng et al. 2007) and BETACON (Cheng et al. 
2005) are used to constrain the simulation search and improve the funnel around 
the global minimum of the energy landscape.  

The trajectories of the low-temperature replicas of the first-round 
TASSER simulations are clustered by SPICKER (Zhang et al. 2004b). The cluster 
centroids are obtained by averaging all the clustered structures after superposition 
and are ranked based on the structure density of the cluster. Cluster centroids 
generally have a number of non-physical steric clashes between Cα atoms and 
can be over-compressed. Starting from the selected SPICKER cluster centroids, 
the TASSER Monte Carlo simulation is performed again (see Figure 3). While the 
inherent I-TASSER potential remains unchanged in the second run, external 
constraints are added, which are derived by pooling the initial high-confidence 
restraints from threading alignments, the distance and contact restraints from the 
combination of the centroid structures, and the PDB structures identified by the 
structure alignment program TM-align (Zhang et al. 2005b) using the cluster 
centroids as query structures. The conformation with the lowest energy in the 
second round is selected as the final model. The main purpose of this iterative 
strategy is to remove the steric clashes of the cluster centroids. To increase the 
biological usefulness of protein models, all-atom models are generated by REMO 
(Li et al. 2009) simulations, which include three general steps: (1) removal of 
steric clashes by moving around each of the Cα atoms that clash with other 
residues; (2) backbone reconstruction by scanning a backbone isomer library 
collected from the solved high-resolution structures in the PDB library; (3) 
hydrogen bonding network optimization based on predicted secondary structure 
from PSIPRED. Finally, Scwrl3.0 (Canutescu et al. 2003) is used to add the side-
chain rotamers.  

Recently, I-TASSER was extended by an additional component to predict 
the biological function of the query proteins. The procedure involves matching the 
I-TASSER-generated structural models against representative libraries of proteins 



with known function using both global and local structure alignment based 
methods in order to find the best functional homologs in the PDB library. Based 
on a large-scale benchmark test set of 218 non-homologous proteins, it was found 
that even when the structures are predicted after removing all the homologous 
templates from the template library, the correct function (EC number and GO 
terms) could be predicted for 72% of the test proteins with a precision of 74%  
(Roy et al. 2010). 
 
11.5 TASSER/I-TASSER structure prediction on large-scale benchmarks 

For a comprehensive test of the methodology, we collected a 
representative set of 2,234 single-domain proteins in the PDB whose size ranged 
from 41 to 300 residues (Skolnick et al. 2004a ; Zhang et al. 2004c). For each 
protein, homologous templates with sequence identity >30% to the target are 
excluded from the threading template library (Skolnick et al. 2004a ; Zhang et al. 
2004c). In Figure 4a, we present a chart showing the fractions of I-TASSER-
generated models having RMSDs (from the native structure) below various 
thresholds. About 2/3 of targets (1,470/2,234) have an acceptable topology 
(RMSD from native <6.5 Å); 46% of targets (1,026/2,234) have an RMSD from 
the native structure <4 Å. As the RMSD threshold decreases, the fraction of 
models below the threshold (especially those <2Å) sharply drops, which is 
partially due to the limitations of the TASSER potential with regard to high-
resolution modeling. 

Because there is no template alignment available, loop modeling is a 
difficult unsolved problem in protein structure prediction. In the 2,234-protein 
benchmark set, there are overall 3,565 unaligned regions (ranging from 4 to 170 
residues long, mainly in loops and tails). If we assess loop modeling accuracy by 
calculating the RMSD between the predicted and the native loop conformations 
based on a superposition of the stem residues (Zhang et al. 2004c), the average 
RMSD for all 3,565 loops is 6.1 Å, a low value in comparison with the RMSD of 
14.2 Å obtained when the same loops are built by MODELLER (Sali et al. 1993). 
If we use an RMSD cutoff of 4 Å to define success, MODELLER succeeds in 
14% (499 of 3,565) of the cases, whereas TASSER ab initio modeling is 
successful in 44% (1,567 of 3,565) of the cases. 

In Figure 4b, we show the RMSD distribution of I-TASSER ab initio 
models for 56 small (<120 residues) single-domain proteins (Wu et al. 2007a). 
Any meaningful template with a sequence identity >20% to the target or having a 
PSI-BLAST E-value <0.5 was excluded. In this limit, about 90% of the final 
models have a correct fold, with an RMSD <6.5 Å from the native structure. The 
average RMSD of the I-TASSER models is 3.8 Å, compared to 5.9 Å by 
TOUCHSTONE (Zhang et al. 2003) for the same set of proteins. Since the 
template exclusion used here is much stricter than that in TOUCHSTONE, which 
used a sequence identity cutoff of 30%, these data demonstrate significant 
progress by I-TASSER over TOUCHSTONE in ab initio modeling. For the 16 
proteins which were also tested by Bradley et al. (Bradley et al. 2005), the overall 
result is comparable with that from all-atomic ROSETTA simulations (both have 



an average RMSD of 3.8 Å), but the CPU time required by I-TASSER was much 
shorter (5 CPU hours vs. 150 CPU days). 

 

Figure 4. The success rate of TASSER/I-TASSER on three benchmark sets vs. the RMSD 
threshold defining success. (a) 2,234 proteins with non-homologous templates from the 
threading program (Skolnick et al. 2004a ; Zhang et al. 2004c). (b) 56 small proteins in the ab 
initio limit (Wu et al. 2007a). (c) 1,489 proteins with non-homologous templates from structure 
alignment by TM-align (Zhang et al. 2005b ; Zhang et al. 2005a) 

 
In Figure 4c, we show the success rates of a procedure that uses the best 

templates identified by structural alignments. First, a representative set of 1,489 
target proteins from the PDB with lengths between 41 and 200 residues was taken 
as target proteins; then the native structure of each target was superimposed to 
structures in the PDB to identify the best template, while homologous templates 
with sequence identity >25% to the target are excluded (Zhang et al. 2005a). The 
purpose of this experiment was to examine whether the current PDB structure 
library is complete (Zhang et al. 2005a) and if so, how well TASSER structure 
prediction can perform when starting from the best possible non-homologous 
templates. The data show that starting from structural alignments, TASSER 
generates “foldable” models with a RMSD <6 Å for almost all targets, and “good” 
models with a RMSD <4 Å for 97% of the targets. Although the fraction of high-
resolution models (<2 Å) is still relatively low, these striking data suggest that 
when the goal is to build a model with correct topology (RMSD <6 Å (Zhang et 
al. 2005a)), the structure prediction problem for single-domain proteins could in 
principle be solved using the current PDB by efficient fold recognition algorithms 
that would be able to recover the structural alignments (Zhang et al. 2005a). 
Indeed, all single-domain folds in the PDB are represented in an artificially 
generated library of compact, hydrogen-bonded, sticky homo-polypeptide 
structures (Zhang et al. 2006b). 
 
11.6 Prediction of all medium-sized ORFs in the E.coli genome 
 Inspired by the success of the benchmark test, a genome-scale structure 
prediction experiment (Zhang et al. 2004a) was carried out for all 1,360 medium-
sized ORFs (<201 residues) in the E. coli genome (Blattner et al. 1997). The 
PROSPECTOR_3 threading algorithm assigns 829 proteins to the easy set, 521 to 
the medium set and only 10 to the hard set; this target distribution is quite similar 



to that of the benchmark set. Based on the benchmarking study described above, a 
confidence score (or C-score) was defined to assess the quality of a model, which 
is a combination of the Z-score of the threading template and the degree of 
convergence of the conformations generated by the CAS refinement simulations. 
The confidence score is defined by 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= Z

Mrmsd
MC-score
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ln                                                          (1) 

where M is the multiplicity of structures in a given SPICKER cluster, <rmsd> is 
the average RMSD of the structures in the cluster from the cluster centroid, Mtot is 
the total number of conformations used as input to SPICKER, and Z is the Z-score 
of the starting template. Having observed a good correlation of C-score with 
RMSD for the benchmark set (a C-score > -1.5 is roughly equivalent to a TM-
score > 0.5 which indicates a similar fold), this C-score could be used to assess 
the quality of the models generated for the E. coli ORFs. The E. coli ORFs were 
found to have a C-score distribution similar to the one observed for the PDB 
benchmark set. If the correlation between C-score and RMSD is assumed to be 
the same for the E. coli set as the benchmark set, ~920 or 68% of the models 
generated can be considered to be reliable. The percentage of correct structures is 
slightly higher than for the PDB benchmark set (see Figure 4), partly because 
homologous proteins were not excluded during the threading process for the E. 
coli ORFs. A histogram showing the distribution of C-scores for the E. coli ORFs 
and the PDB benchmark set is shown in Figure 5.  

 

Figure 5: A histogram showing the C-score (defined in Eq. 1) distribution of models for the E coli 
genome (solid line) and the PDB benchmark set (bars). The different colors in the bars indicate the 
fraction of targets below and above an RMSD cutoff of 6.5Å for the PDB benchmark set.  



 
 Transmembrane proteins are particularly difficult to crystallize, with 
difficulties ranging from expression of membrane proteins in microbial host cells 
to purification of the protein to the crystallization process itself, due to the 
amphipathic nature of their environment (Ostermeier et al. 1997 ; Caffrey 2003). 
Hence, accurate prediction of membrane proteins is of special importance. 
According to MEMSAT (Jones et al. 1994), 309 of the 1,360 E. coli ORFs belong 
to the membrane protein class. The TASSER models generated for these ORFs 
share good consistency with the MEMSAT predictions in having at least one 
long, putative transmembrane helix. If the C-score, defined above, is used to map 
the models, 174 of the 309 proteins or 56% have a probability >60% to have an 
overall RMSD <6.5Å and about 146 or 47% have a chance >80% to have an 
RMSD less than 6.5Å.  
 
11.7 Structural modeling of all 907 putative GPCRs in the human genome 
 G protein-coupled receptors (GPCRs) comprise the largest family of 
integral membrane proteins and act as cell surface receptors responsible for the 
transduction of an endogenous signal into a cellular response (Watson et al. 1994 ; 
Flower 1999). Many diseases involve their malfunction, making them the most 
important class of drug targets (Flower 1999 ; Drews 2000 ; Lundstrom 2005 ; 
Hubbard 2006) However, structure-based drug design has been hampered by the 
lack of atomic-level protein structure information for GPCRs. Until now, only 
four GPCR structures, bovine rhodopsin, (Palczewski et al. 2000) turkey β1-
adrenergic receptor, (Warne et al. 2008) and human β2-adrenergic (Cherezov et al. 
2007 ; Rasmussen et al. 2007 ; Rosenbaum et al. 2007) and A2A-adenosine 
receptors, (Jaakola et al. 2008) have been solved. 

We collected 907 human GPCRs from the registered entries at 
http://www.cmbi.kun.nl/7tm/htmls/entries.html and http://www.expasy.org/cgi-
bin/lists?7tmrlist.txt. TASSER was employed to model all the GPCRs (Zhang et 
al. 2006a). The resulting models are publicly downloadable from 
http://cssb.biology.gatech.edu/ skolnick/files/gpcr/gpcr.html. 

Because there was no restraint on the global topology, it is of interest to 
examine how often the models adopt a typical TM-helix bundle architecture. 
Using an automatic TM-helix identification program, we found that 862 of the 
907 GPCRs have the 7-helix bundle topology, although only 744 targets started 
from a TM-helix-like template. Among the other 45 cases, 16 are incomplete or 
alternatively spliced transcripts; most are missing the majority of their TM 
regions; three (Q8TDU0, Q8TDV3, Q96HT6) do not appear to be GPCRs based 
on sequence analysis; (Marchler-Bauer et al. 2005) two (Q9HC23 and P06850) 
are wrongly annotated as GPCRs (Pisarska et al. 2001 ; Chen et al. 2005b). The 
remainder may represent incorrect TASSER predictions, since the C-score of 
these targets is low.  

Although at the time of the study, there was no solved X-ray or NMR 
structure for any human GPCR and a direct comparison of models with 
experimental structures was not possible, two criteria were found to be useful for 
the assessment our models. First, we use the model’s C-score (see Eq. 1). Based 



on the 2,234-protein benchmark set, the correlation coefficient between C-score 
and RMSD is 0.85 (Skolnick et al. 2004a), with a similar correlation also obtained 
for a benchmark set of 38 membrane proteins (Zhang et al. 2006a). Due to the 
uniform 7-TM topology and the robust sequence profiles (Skolnick et al. 2004b), 
a much higher fraction of the GPCR models have a high C-score than the models 
generated for PDB benchmark set (Figure 6). Assuming that the GPCR models 
have the same correlation between C-score and RMSD as those of the PDB 
benchmark proteins, we estimate that 819 GPCR models have a correct fold with 
a RMSD below 6.5 Å.  

 

Figure 6: Histogram showing the distribution of C-scores (defined in Eq. 1) for the PDB 
benchmark set (bars) and the GPCR models (solid line). The different colors in the bars indicate 
the fraction of models in the PDB benchmark set with an RMSD below (dark grey) and above 
(light gray) 6.5Å, respectively. 

 
Second, we evaluated the GPCR models by considering the affinity 

labeling and site-directed mutagenesis experiments designed to identify critical 
residues and motifs that participate in ligand binding (Schwartz 1994 ; Flower 
1999 ; Shi et al. 2002). These data provide useful clues about the spatial 
arrangements of binding site residues, and we can examine if our models are 
consistent with these. We checked all TASSER models with C-score >1.3 with 
available site-directed mutagenesis data collected from 64 papers. These included 
angiotensin receptor 1, chemokine receptors, opioid receptors, thromboxane A2 
receptor, neuromedin B receptor, melatonin 2 receptor, gonadotropin-releasing 
hormone receptor, and neuropeptide Y receptors. Excluding N- and C-terminal 



tails, the TASSER-predicted models were consistent with the experiment (Zhang 
et al. 2006a). Figure 7 shows the human Y1 receptor. Consistent with the 
mutagenesis studies (Zhou et al. 1994 ; Hwa et al. 1995 ; Sautel et al. 1996 ; Du 
et al. 1997), the ligand binding residues are well grouped in the model. 

 

Figure 7. The first model of neuropeptide Y Y1 receptor predicted by TASSER, having a C-score 
of 1.93. (Zhang et al. 2006a) Secondary structure elements are displayed as open ribbons. (A). 
Three pairs of highlighted residues are in contact as verified by the reciprocal mutagenesis 
experiments. (B). Highlighted residues represent the important residues identified in NPY agonist 
binding mutagenesis experiments. (C). Highlighted residues are the critical residues identified by 
BIBP3226 antagonist binding mutagenesis experiments. (Sautel et al. 1996 ; Du et al. 1997) 

 
Based on an all-against-all comparison of the predicted structures, GPCRs 

in the same functional family were found to be more conserved in structure space 
than in sequence space. This finding establishes the possibility of functional 
annotation of orphan proteins based on topology-level comparisons of predicted 
structures. One such instance is the RDC1 receptor, which was considered an 
orphan receptor for 15 years; its closest but weak relative is the adrenomedullin 
receptor (AMDR) based on phylogenetic studies (Ladoux et al. 2000). The 
TASSER structural predictions placed the RDC1 receptor in the family of 
chemokine receptors because the predicted RDC1 structure is closest to the 
predicted structure of the CXCR4 chemokine receptor (Zhang et al. 2006a). This 
finding was later confirmed by binding experiments. (Miao et al. 2007) 
 After the modeling had been done (Zhang et al. 2006a), the structures of 
two human GPCRs, the β2 adrenergic and A2A adenosine receptor, were solved 
by two laboratories at Stanford University and The Scripps Research Institute 
(Cherezov et al. 2007 ; Rasmussen et al. 2007 ; Jaakola et al. 2008). These 



structures provide a unique opportunity to objectively examine the quality of the 
TASSER models. β2AR is a class-A receptor that is 413 residues long. It is found 
in human smooth muscle and mediates the catecholamine-induced activation of 
adenylate cyclase through the action of G proteins. Efforts to crystallize wild-type 
β2AR had been unsuccessful because of the inherent conformational plasticity 
mainly induced by the C-terminal tail and the third unstructured intracellular loop 
(ICL3) (Granier et al. 2007 ; Rosenbaum et al. 2007). To increase crystal contacts, 
Rasmussen et al (Rasmussen et al. 2007) remove the C-terminus and bind a 
monoclonal antibody (Mab5) to ICL3. Using high-brilliance microcrystallography, 
the structure of a 216 residue portion was determined at a resolution of 3.4 Å 
(PDB ID: 2r4rA). Cherezov et al (Cherezov et al. 2007) replaced ICL3 with T4 
lysozyme (T4L) to increase the TM conformational stability. This led to a high-
resolution structure of 282 residues with a resolution of 2.4 Å (PDB ID: 2rh1A). 
The missing parts are mainly from the N- and C-termini and the ICL3 region. 
This is the first solved human GPCR structure. Because it is longer and has a 
higher resolution than 2r4rA, we compared our models to 2rh1A in our analysis.  

In our modeling of β2AR, PROSPECTOR3 identified bovine rhodopsin 
(1f88A) as the template with a high significance score (Z-score=23.1). The 
RMSD of the 253 aligned residues from the template to the native structure is 
4.94 Å with a TM-score=0.71. In the 7 TM-helix regions, i.e. TM1 (29-60), TM2 
(67-96), TM3 (103-136), TM4 (147-171), TM5 (197-229), TM6 (267-298), and 
TM7 (305-328), the RMSD for the rhodopsin template is 3.7 Å. TASSER takes 
the restraints from the template and reassembles the fragments with loops built by 
ab initio modeling. As a result, the structure of the first model has an RMSD of 
4.37 Å in the threading aligned regions; for the 7 TM-helix regions, the RMSD of 
the first TASSER model is 2.28 Å (Figure 8, left panel). For the full-length model, 
the RMSD to native is 4.88 Å with a TM-score=0.82.  

 

Figure 8. Side and top views of the first TASSER model (gray) superposed on the crystal 
structure (dark) of β2AR and ADORA2A over the seven transmembrane regions with a RMSD 
2.28 Å and 2.87 Å, respectively. 

 
ADORA2A is a class-A purinergic receptor with a length of 412 residues. 

Stevens and coworkers exploited a similar T4L fusion strategy to crystallize the 
receptor resulting in a structure of 2.6 Å resolution (PDB ID: 3eml) (Jaakola et al. 
2008). PROSPECTOR3 identified again the bovine rhodopsin as a template with 
an RMSD of 5.13 Å in 262 aligned residues; the RMSD of the templates in the 
TM-regions is 3.23 Å. After TASSER reassembly, the RMSD of the first model in 



the threading aligned regions is 4.20 Å while in the 7 TM-helix regions, the 
RMSD of the model is reduced to 2.84 Å (Figure 8, Right panel). The overall 
RMSD of the full-chain model is 4.76 Å with a TM-score=0.80. It should be 
mentioned that the modeling here was made using rhodopsin as template. When 
using the newly solved adrenergic receptors which are structurally closer to 
ADORA2A, the models could be further improved, e.g. the RMSD in TM-helices 
of our model by I-TASSER which was recently submitted to the community-wide 
GPCR docking experiment  (Michino et al. 2009) was 2.04 Å (model ID: 
1800_2.pdb, picture not shown).  

Both blind-test examples (β2AR and ADORA2A) show that the 
TASSER/I-TASSER fragment assembly procedure can draw the template 
significantly closer to the native structure (i.e. by 1.4Å/0.6Å and 0.4Å/0.9Å in 
TM-helix/aligned regions for β2AR and ADORA2A, respectively). This ability to 
refine structures is particularly important for modeling those GPCRs that do not 
have close templates in the PDB. 

 Currently, efforts are under way to extend the I-TASSER methodology for 
predicting the structure of all classes of integral membrane proteins. In an initial 
benchmarking study, 88 integral membrane proteins (66 α- and 24 β-barrel 
proteins) belonging to 24 different families were selected from the PDB and 
modeled using the current I-TASSER protocol, excluding any templates 
having >30% sequence identity with the target. Overall, 61 proteins were 
classified as easy targets, 24 as medium and 3 as hard targets, based on the 
LOMETS threading alignment. For 37 proteins, the best identified template was 
itself a membrane protein, and 43 templates had a TM-score >0.6 with the native 
target structure, showing that good templates exist in the current PDB library for 
~45% of the membrane proteins. After generating full-legnth models by the I-
TASSER procedure, 37 proteins in the benchmark set were modeled with an 
average RMSD of 4.203 Å, and 43 proteins had an average TM-score of 0.7726 
for the full length model. Much effort is being made to develop a membrane-
protein specific version of I-TASSER, which would be capable of taking into 
consideration the uniqueness of the membrane environment and predicting 
integral membrane protein structures even when no good template is identified in 
the template library, with an equivalent precision and accuracy to that for globular 
proteins.   

 
11.8 Application of I-TASSER to the Chlamydia trachomatis genome 

Bacteria from the Chlamydia genus are implicated in a large number of 
human diseases, including glaucoma and ectopic pregnancy among many others. 
The lack of a gene transfer system for these bacteria makes them difficult to study 
ex vivo and has greatly hampered our understanding of their biology. Although 
the genome sequence of many Chlamydia species are freely available in genome 
databases, the functional annotations of ORFs in these genomes, based on 
sequence comparisons has been limited due to the lack of reliable sequence 
similarity with proteins of known function. As residues located far apart in the 
sequence may be very close in 3D space, and only a few spatially conserved 
residues are generally responsible for a protein’s function (Wallace et al. 1996 ; 



Kleywegt 1999), predicted 3D structures for proteins from such organisms can 
provide meaningful insights into the key component(s) of their functionality. 

 

Figure 9. (A) Distribution of C-scores of predicted structures for 100 proteins in Chlamydia 
trachomatis genome using I-TASSER. (B) Comparison of the modeled structure of CT780 (dark 
grey and stick) with the crystal structure of thioredoxin disulphide isomerase (dark grey and 
cartoon) from Chlamydia pneumoniae.  

 
The I-TASSER methodology for protein structure and function prediction 

was recently applied to 100 ORFs with no functional annotation in the Chlamydia 
trachomatis genome. Figure 9A shows the distribution of the confidence score (C-
score) of the first I-TASSER models for all 100 proteins. Based on the correlation 
data of C-score with RMSD and TM-score (Zhang 2008a), it can be expected that 
66 of these 100 proteins could be correctly folded (predicted TM-score >0.6) and 
could provide meaningful insight into the function of these proteins.  

Moreover, by using a local and global structure alignment based method, a 
highly confident function prediction (based on a benchmark test of 218 proteins) 
could be made for 12 enzymatic and 38 non-enzymatic proteins, i.e. altogether 
exactly 50% of all target proteins. Figure 9B shows an illustrative example, the 
protein CT780. The structure of an ortholog of this protein, in C. pneumoniae, had 
already been solved (PDB: 2ju5). For testing purposes, the structure of CT780 
was modeled by excluding this template and all other proteins having a sequence 
>40% with the target. The first model generated by I-TASSER had a TM-score of 
0.84 in the core region (when compared to 2ju5, the C. pneumoniae ortholog), 
reflecting that the structure was predicted correctly. Based on this predicted model, 
TM-align identified a correct functional homolog, the third thioredoxin domain of 
protein disulfide isomerase A4 from mouse, with EC: 5.3.4.1 (2dj3A). Primary 
sequence comparison supports the annotation of the protein as a thioredoxin 
disulfide isomerase DsbH. Functional studies on DsbH demonstrated that it 
exhibits many of the enzymatic properties of thioredoxin from E. coli  (Mac et al. 
2008).This identified homolog shares a sequence identity of 27.1% with the query 
protein, showing that even when only remotely homologous templates are 
available, the modeled structure can provide meaningful insight into the 
molecular function, and can make genomic-scale functional annotation a reality. 



 
11.9 Concluding remarks 
 Genome-wide structure predictions have been carried out by state-of-the-
art methods for a number of organisms, with representative examples including 
the predictions for Saccharomyces cerevisiae by MODELLER (Sanchez et al. 
1998), the yeast proteome by ROSETTA (Malmstrom et al. 2007), and the E. coli 
proteome (Skolnick et al. 2004a), all human GPCRs (Zhang et al. 2006a), and the 
Chlamydia trachomatis proteome by TASSER/I-TASSER (Skolnick et al. 2004a ; 
Wu et al. 2007a). A large percentage of the proteins in proteomes (e.g. 47% of 
yeast proteins) can be classified as a comparative modeling or fold recognition 
target, for which reliable structures can be built by current template-based 
methods. These predictions are immediately useful for function prediction and for 
the design and interpretation of wet-lab experiments (Zhang 2009b). For the 
proteins with no recognizable relationship to known structures, ab initio methods 
have to be developed for structure prediction. However, there are serious 
limitations to the application of the ab initio methods, which hamper their use in 
genome-wide prediction. In the absence of recognizable similarity to proteins 
with known domains, splitting long sequences into domains can be done with 
only limited accuracy. Even when domain parsing is successful, ab initio methods 
can hardly be applied to domains >150 residues (Zhang 2008b). Membrane 
proteins are another group which is often excluded from the prediction attempts 
except for special classes where homologous or analogous templates are 
available. Therefore, the efforts of genome-wide prediction based on ab initio 
approaches (Kihara et al. 2002 ; Skolnick et al. 2004a ; Malmstrom et al. 2007) 
and those aimed at membrane proteins (Zhang et al. 2006a) are exceptionally 
important. Although their results so far are encouraging, when all structure 
prediction approaches are combined, a significant fraction (~1/3) of the proteome 
remains that is inaccessible to current methods (Zhang 2008b). 
 Although the ultimate purpose of structure prediction is to help design and 
interpret experiments, the accuracy of the final model determines its possible use. 
Only high-resolution models can be used for reliable docking or drug design; the 
lower-resolution structures can be useful for superfamily assignment or putative 
functional annotation (Zhang 2009b). The refinement of low-resolution models to 
achieve higher resolution is therefore of key importance but remains a challenge 
(Kopp et al. 2007 ; Read et al. 2007). 
 In the context of genome-wide protein structure prediction, the “sequence-
to-structure-to-function” paradigm does not necessarily have to be conceived as a 
one-way path. Obviously, functional annotation can be based on predicted 
structures; but this relationship also works the other way: existing functional 
information can help select the most likely structure when several different 
candidate structures are available. The study of Malmstrom et al. (Malmstrom et 
al. 2007) represents a prime example for this logic: the assignment of SCOP 
superfamilies to ab initio predicted domain structures was augmented by the 
available functional data. In the future, the integration of computational and 
experimental findings will be essential to enhance our understanding of biological 
processes.  
 



Acknowledgements 
The project is supported in part by the Alfred P. Sloan Foundation, NSF Career 
Award (DBI 0746198), and the National Institute of General Medical Sciences 
(R01GM083107, R01GM084222). 
 
References 
  
Aloy P, Querol E, Aviles F, Sternberg J. 2001. Automated structure based 

prediction of functional sites in proteins: applications to assessing the validity 
of inheriting protein function from homology in genome annotation and to 
protein docking. Journal of Molecular Biology 311(2):395-408. 

Altschucl S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D. 
1997. Gapped BLAST and PSI_BLAST: a new generation of protein 
database search programs. Nucleic Acids Research 25(17):3389-3402. 

Anfinsen CB. 1973. Principles that govern the folding of protein chains. Science 
181(96):223-230. 

Baker D, Sali A. 2001. Protein structure prediction and structural genomics. 
Science 294:93-96. 

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov 
IN, Bourne PE. 2000. The Protein Data Bank. Nucleic Acids Res 28(1):235-
242. 

Blattner F, III GP, Bloch C, Perna N, Burland V, Riley M, Collado-Vides J, 
Glasner J, Rode C, Mayhew G and others. 1997. The complete genome 
sequence of E. coli K-12. Science 277:1453-1474. 

Bowie JU, Luthy R, Eisenberg D. 1991. A method to identify protein sequences 
that fold into a known three-dimensional structure. Science 253(5016):164-
170. 

Bradley P, Misuara K, Baker D. 2005. Towards high-resolution de novo structure 
prediction for small proteins. Science 309:1868-1871. 

Caffrey M. 2003. Membrane protein crystallization. J Struct Biol 142(1):108-132. 
Canutescu AA, Shelenkov AA, Dunbrack RL, Jr. 2003. A graph-theory algorithm 

for rapid protein side-chain prediction. Protein Sci 12(9):2001-2014. 
Chandonia J, Brenner S. 2006. The Impact of structural genomics: expectations 

and outcomes. Science 311:347-351. 
Chen H, Zhou HX. 2005a. Prediction of solvent accessibility and sites of 

deleterious mutations from protein sequence. Nucleic Acids Res 
33(10):3193-3199. 

Chen J, Kuei C, Sutton S, Wilson S, Yu J, Kamme F, Mazur C, Lovenberg T, Liu 
C. 2005b. Identification and pharmacological characterization of prokineticin 
2beta as a selective ligand for prokineticin receptor 1. Mol Pharmacol 
67(6):2070-2076. 

Cheng J, Baldi P. 2005. Three-stage prediction of protein beta-sheets by neural 
networks, alignments and graph algorithms. Bioinformatics 21 Suppl 1:i75-
84. 

Cheng J, Baldi P. 2007. Improved residue contact prediction using support vector 
machines and a large feature set. BMC Bioinformatics 8:113. 



Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka 
TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK and others. 2007. High-
resolution crystal structure of an engineered human beta2-adrenergic G 
protein-coupled receptor. Science 318(5854):1258-1265. 

Drews J. 2000. Drug discovery: a historical perspective. Science 287(5460):1960-
1964. 

Du P, Salon JA, Tamm JA, Hou C, Cui W, Walker MW, Adham N, Dhanoa DS, 
Islam I, Vaysse PJ and others. 1997. Modeling the G-protein-coupled 
neuropeptide Y Y1 receptor agonist and antagonist binding sites. Protein Eng 
10(2):109-117. 

Fischer D, Eisenberg D. 1997. Assigning folds to the proteins encoded by the 
genome of Mycoplasma genitalium. Proceedings of The National Academy 
of Science 94:11929-11934. 

Fiser A, Do RK, Sali A. 2000. Modeling of loops in protein structures. Protein Sci 
9(9):1753-1773. 

Flower DR. 1999. Modelling G-protein-coupled receptors for drug design. 
Biochim Biophys Acta 1422(3):207-234. 

Fraser C, Gocayne J, White O, Adams M, Clayton R, Fleischmann R, Bult C, 
Kerlavage A, Sutton G, Kelley J and others. 1995. The minimal gene 
complement of Mycoplasma genitalium. Science 270:397-403. 

Frishman D, Argos P. 1995. Knowledge-based protein secondary structure 
assignment. Proteins 23(4):566-579. 

Gerstein M, Edwards A, Arrowsmith C, Montelione G. 2003. Structural 
genomics: Current progress. Science 299(5613):1663. 

Granier S, Kim S, Shafer AM, Ratnala VR, Fung JJ, Zare RN, Kobilka B. 2007. 
Structure and conformational changes in the C-terminal domain of the beta2-
adrenoceptor: insights from fluorescence resonance energy transfer studies. J 
Biol Chem 282(18):13895-13905. 

Hubbard R, editor. 2006. First ed: Royal Society of Chemistry. 
Hwa J, Graham RM, Perez DM. 1995. Identification of critical determinants of 

alpha 1-adrenergic receptor subtype selective agonist binding. J Biol Chem 
270(39):23189-23195. 

Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman 
AP, Stevens RC. 2008. The 2.6 angstrom crystal structure of a human A2A 
adenosine receptor bound to an antagonist. Science 322(5905):1211-1217. 

Jones D. 1999. Protein secondary structure prediction based on position-specific 
scoring matrices. Journal of Molecular Biology 292:195-202. 

Jones DT, Taylor WR, Thornton JM. 1992. A new approach to protein fold 
recognition. Nature 358(6381):86-89. 

Jones DT, Taylor WR, Thornton JM. 1994. A model recognition approach to the 
prediction of all-helical membrane protein structure and topology. 
Biochemistry 33(10):3038-3049. 

Karplus K, Barrett C, Hughey R. 1998. Hidden markov models for detecting 
remote protein homologies. Bioinformatics 14(10):846-856. 



Kihara D, Lu H, Kolinski A, Skolnick J. 2001. TOUCHSTONE: An ab initio 
protein structure prediction method that uses threading based tertiary 
restraints Proceedings of The National Academy of Science 98:10125-10130. 

Kihara D, Zhang Y, Lu H, Kolinski A, J. S. 2002. Ab initio protein structure 
prediction on a genomic scale: application to Mycoplasma genitalim genome. 
Proceedings of The National Academy of Science 99:5993-5998. 

Klepeis JL, Wei Y, Hecht MH, Floudas CA. 2005. Ab initio prediction of the 
three-dimensional structure of a de novo designed protein: a double-blind 
case study. Proteins 58(3):560-570. 

Kleywegt GJ. 1999. Recognition of spatial motifs in protein structures. J Mol Biol 
285(4):1887-1897. 

Kolinski A, Skolnick J. 1994. Monte Carlo simulations of protein folding. I. 
Lattice model and interaction scheme. Proteins 18(4):338-352. 

Kopp J, Bordoli L, Battey JN, Kiefer F, Schwede T. 2007. Assessment of CASP7 
predictions for template-based modeling targets. Proteins 69 Suppl 8:38-56. 

Ladoux A, Frelin C. 2000. Coordinated Up-regulation by hypoxia of 
adrenomedullin and one of its putative receptors (RDC-1) in cells of the rat 
blood-brain barrier. J Biol Chem 275(51):39914-39919. 

Li Y, Zhang Y. 2009. REMO: A new protocol to refine full atomic protein models 
from C-alpha traces by optimizing hydrogen-bonding networks. Proteins. 

Liwo A, Lee J, Ripoll DR, Pillardy J, Scheraga HA. 1999. Protein structure 
prediction by global optimization of a potential energy function. Proc Natl 
Acad Sci U S A 96(10):5482-5485. 

Lopez G, Rojas A, Tress M, Valencia A. 2007. Assessment of predictions 
submitted for the CASP7 function prediction category. Proteins 69 Suppl 
8:165-174. 

Lundstrom K. 2005. Structural biology of G protein-coupled receptors. Bioorg 
Med Chem Lett 15(16):3654-3657. 

Mac TT, von Hacht A, Hung KC, Dutton RJ, Boyd D, Bardwell JC, Ulmer TS. 
2008. Insight into disulfide bond catalysis in Chlamydia from the structure 
and function of DsbH, a novel oxidoreductase. J Biol Chem 283(2):824-832. 

Malmstrom L, Riffle M, Strauss CE, Chivian D, Davis TN, Bonneau R, Baker D. 
2007. Superfamily assignments for the yeast proteome through integration of 
structure prediction with the gene ontology. PLoS Biol 5(4):e76. 

Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, 
Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z and others. 2005. CDD: a 
Conserved Domain Database for protein classification. Nucleic Acids Res 
33(Database issue):D192-196. 

Marti-Renom M, Stuart A, Fiser A, Sanchez R, Melo F, Sali A. 2000. 
Comparative protein structure modeling of genes and genomes Annual 
Review of Biophysics and Biomolecular Structure 29:291-325. 

McGuffin L, Jones D. 2003. Improvement of GenTHREADER method for 
genomic fold recognition. Bioinformatics 19(7):874-881. 

Miao Z, Luker KE, Summers BC, Berahovich R, Bhojani MS, Rehemtulla A, 
Kleer CG, Essner JJ, Nasevicius A, Luker GD and others. 2007. CXCR7 
(RDC1) promotes breast and lung tumor growth in vivo and is expressed on 



tumor-associated vasculature. Proc Natl Acad Sci U S A 104(40):15735-
15740. 

Michino M, Abola E, Brooks III CL, Dixon JS, Moult J, Stevens RC. 2009. 
Community-wide blind assessment of methods for GPCR structure modeling 
and docking. Nature Reviews: Drug Discovery:Submitted. 

Needleman S, Wunsch C. 1970. A general method applicable to the search for 
similarities in the amino acid sequence of two proteins. Journal of Molecular 
Biology 48:443-453. 

Oldziej S, Czaplewski C, Liwo A, Chinchio M, Nanias M, Vila JA, Khalili M, 
Arnautova YA, Jagielska A, Makowski M and others. 2005. Physics-based 
protein-structure prediction using a hierarchical protocol based on the 
UNRES force field: assessment in two blind tests. Proc Natl Acad Sci U S A 
102(21):7547-7552. 

Ostermeier C, Michel H. 1997. Crystallization of membrane proteins. Curr Opin 
Struct Biol 7(5):697-701. 

Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le 
Trong I, Teller DC, Okada T, Stenkamp RE and others. 2000. Crystal 
structure of rhodopsin: A G protein-coupled receptor. Science 
289(5480):739-745. 

Pisarska M, Mulchahey JJ, Sheriff S, Geracioti TD, Kasckow JW. 2001. 
Regulation of corticotropin-releasing hormone in vitro. Peptides 22(5):705-
712. 

Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, 
Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF and others. 2007. 
Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. 
Nature 450(7168):383-387. 

Read RJ, Chavali G. 2007. Assessment of CASP7 predictions in the high 
accuracy template-based modeling category. Proteins 69 Suppl 8:27-37. 

Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka 
TS, Choi HJ, Yao XJ, Weis WI, Stevens RC and others. 2007. GPCR 
engineering yields high-resolution structural insights into beta2-adrenergic 
receptor function. Science 318(5854):1266-1273. 

Rost B. 1999. Twilight zone of protein sequence alignments. Protein Eng 
12(2):85-94. 

Roy A, Kucukural A, Mukherjee S, Hefty PS, Zhang Y. 2010. Large scale 
benchmarking of protein function prediction using modeled protein 
structures. J Mol Biol(Submitted). 

Sali A, Blundell T. 1993. Comparative protein modelling by satisfaction of spatial 
restraints. Journal of Molecular Biology 234:779-815. 

Sanchez R, Pieper U, Mirkovic N, Bakker Pd, Wittenstein E, Sali A. 2000. 
MODBASE, a database of annotated comparitive protein structure models 
Nucleic Acids Research 28(1):250-253. 

Sanchez R, Sali A. 1997. Evaluation of comparative protein structure modelling 
by MODELLER-3. Proteins Suppl 1:50-58. 



Sanchez R, Sali A. 1998. Large scale structure modelling of the Saccharomyces 
cerevisiae genome. Proceedings of The National Academy of Science 
95:13597-13602. 

Sautel M, Rudolf K, Wittneben H, Herzog H, Martinez R, Munoz M, Eberlein W, 
Engel W, Walker P, Beck-Sickinger AG. 1996. Neuropeptide Y and the 
nonpeptide antagonist BIBP 3226 share an overlapping binding site at the 
human Y1 receptor. Mol Pharmacol 50(2):285-292. 

Schwartz TW. 1994. Locating ligand-binding sites in 7TM receptors by protein 
engineering. Curr Opin Biotechnol 5(4):434-444. 

Shi J, Blundell TL, Mizuguchi K. 2001. FUGUE: sequence-structure homology 
recognition using environment-specific substitution tables and structure-
dependent gap penalties. J Mol Biol 310(1):243-257. 

Shi L, Javitch JA. 2002. The binding site of aminergic G protein-coupled 
receptors: the transmembrane segments and second extracellular loop. Annu 
Rev Pharmacol Toxicol 42:437-467. 

Simons KT, Kooperberg C, Huang E, Baker D. 1997. Assembly of protein tertiary 
structures from fragments with similar local sequences using simulated 
annealing and Bayesian scoring functions. J Mol Biol 268(1):209-225. 

Simons KT, Strauss C, Baker D. 2001. Prospects for ab initio protein structural 
genomics. J Mol Biol 306(5):1191-1199. 

Sippl M, Weitckus S. 1992. Detection of native like models for amino acid 
sequences of unknown three-dimensional structure in a database of known 
protein conformations Proteins 13:258-271. 

Skolnick J, Fetrow JS, Kolinski A. 2000. Structural genomics and its importance 
for gene function analysis. Nat Biotechnol 18(3):283-287. 

Skolnick J, Kihara D. 2001. Defrosting the frozen approximation: PROSPECTOR 
- a new approach to threading. Proteins:Structure,Function and Genetics 
42:319-331. 

Skolnick J, Kihara D, Zhang Y. 2004a. Development and large scale benchmark 
testing of the PROSPECTOR_3 threading algorithm. Proteins 56(3):502-518. 

Skolnick J, Kihara D, Zhang Y. 2004b. Development and large scale benchmrk 
testing of the Prospector_3 threading algorithm. Proteins 56(3):502-518. 

Smith TF, Waterman MS. 1981. Identification of common molecular 
subsequences. J Mol Biol 147(1):195-197. 

Soding J. 2005. Protein homology detection by HMM-HMM comparison. 
Bioinformatics 21:951-960. 

Tramontano A, Morea V. 2003. Assesment of homology based predictions in 
CASP 5. Proteins 53(Suppl 6):352-368. 

Vitkup D, Melamud E, Moult J, Sander C. 2001. Completeness in structural 
genomics. Nat Struct Biol 8(6):559-566. 

Wallace AC, Laskowski RA, Thornton JM. 1996. Derivation of 3D coordinate 
templates for searching structural databases: application to Ser-His-Asp 
catalytic triads in the serine proteinases and lipases. Protein Sci 5(6):1001-
1013. 



Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, 
Henderson R, Leslie AG, Tate CG, Schertler GF. 2008. Structure of a beta1-
adrenergic G-protein-coupled receptor. Nature 454(7203):486-491. 

Watson S, Arkinstall S. 1994. The G protein Linked Receptors Factbook. New 
York: Academic Press. 

Wiley SR. 1998. Genomics in the real world. Curr Pharm Des 4(5):417-422. 
Wu S, Skolnick J, Zhang Y. 2007a. Ab initio modelling of small proteins by 

iterative TASSER simulations. BMC Biol 5:17. 
Wu S, Zhang Y. 2007b. LOMETS: a local meta-threading-server for protein 

structure prediction. Nucleic Acids Res 35(10):3375-3382. 
Wu S, Zhang Y. 2008a. A comprehensive assessment of sequence-based and 

template-based methods for protein contact prediction. Bioinformatics 
24(7):924-931. 

Wu S, Zhang Y. 2008b. MUSTER: Improving protein sequence profile-profile 
alignments by using multiple sources of structure information. Proteins 
72:547-556. 

Wu S, Zhang Y. 2009. Improving protein tertiary structure assembly by sequence 
based contact predictions. Submitted. 

Xu Y, Xu D. 2000. Protein threading using PROSPECT: design and evaluation. 
Proteins 40(3):343-354. 

Zhang B, Jaroszewski L, Rychlewski L, Godzik A. 1997. Similarities and 
differences between non-homologous proteins with similar folds: evaluation 
of threading strategies. Folding and Design 2(5):307-317. 

Zhang Y. 2007. Template-based modeling and free modeling by I-TASSER in 
CASP7. Proteins 69 Suppl 8:108-117. 

Zhang Y. 2008a. I-TASSER server for protein 3D structure prediction. BMC 
Bioinformatics 9:40. 

Zhang Y. 2008b. Progress and challenges in protein structure prediction. Curr 
Opin Struct Biol 18(3):342-348. 

Zhang Y. 2009a. I-TASSER: Fully automated protein structure prediction in 
CASP8. Proteins:In press. 

Zhang Y. 2009b. Protein structure prediction: when is it useful? Curr Opin Struct 
Biol 19(2):145-155. 

Zhang Y, Devries ME, Skolnick J. 2006a. Structure modeling of all identified G 
protein-coupled receptors in the human genome. PLoS Comput Biol 2(2):e13. 

Zhang Y, Hubner IA, Arakaki AK, Shakhnovich E, Skolnick J. 2006b. On the 
origin and highly likely completeness of single-domain protein structures. 
Proc Natl Acad Sci U S A 103(8):2605-2610. 

Zhang Y, Kihara D, Skolnick J. 2002. Local energy landscape flattening: Parallel 
hyperbolic monte-carlo sampling of protein folding. Proteins 48:192-201. 

Zhang Y, Kolinski A, Skolnick J. 2003. TOUCHSTONE II: a new approach to ab 
initio protein structure prediction Biophysical Journal 85:1145-1164. 

Zhang Y, Skolnick J. 2004a. Automated Structure Prediction of Weekly 
Homologous Proteins on a Genomic Scale Proceedings of The National 
Academy of Science 101:7594-7599. 



Zhang Y, Skolnick J. 2004b. Spicker: Approach to clustering protein structures 
for near native model selection. J . of Comp. Chem. 25:865-871. 

Zhang Y, Skolnick J. 2004c. Tertiary structure predictions on a comprehensive 
benchmark of medium to large size proteins. Biophysical Journal 87:2647-
2655. 

Zhang Y, Skolnick J. 2005a. The protein structure prediction problem could be 
solved using the current PDB library. Proc Natl Acad Sci U S A 102(4):1029-
1034. 

Zhang Y, Skolnick J. 2005b. TM-align:a protein structure alignment algorithm 
based on the TM-score. Nucleic Acids Research 33(7):2302-2309. 

Zhou H, Zhou Y. 2004. Single-body residue-level knowledge-based energy score 
combined with sequence-profile and secondary structure information for fold 
recognition. Proteins 55(4):1005-1013. 

Zhou H, Zhou Y. 2005. Fold recognition by combining sequence profiles derived 
from evolution and from depth-dependent structural alignment of fragments. 
Proteins 58(2):321-328. 

Zhou W, Flanagan C, Ballesteros JA, Konvicka K, Davidson JS, Weinstein H, 
Millar RP, Sealfon SC. 1994. A reciprocal mutation supports helix 2 and 
helix 7 proximity in the gonadotropin-releasing hormone receptor. Mol 
Pharmacol 45(2):165-170. 

 
 


