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The goal of protein structure prediction is to estimate the

spatial position of every atom of protein molecules from

the amino acid sequence by computational methods.

Depending on the availability of homologous templates in

the PDB library, structure prediction approaches are cat-

egorised into template-based modelling (TBM) and free

modelling (FM). While TBM is by far the only reliable

method for high-resolution structure prediction, chal-

lenges in the field include constructing the correct folds

without using template structures and refining the tem-

plate models closer to the native state when templates are

available. Nevertheless, the usefulness of various levels of

protein structure predictions have been convincingly

demonstrated in biological and medical applications.

Introduction

The ideal solution to the protein structure prediction
problem is based on the physicochemical principles, that is,
to find the native structure of proteins by identifying the
lowest free-energy states. This dreamwasmotivated by the
Anfinsen’s finding that the native structure is determined
only by the protein’s amino acid sequencewhich represents
a unique, stable and kinetically accessible minimum of
the free energy (Anfinsen, 1973). However, no success has
been demonstrated along the line of first principle-based
methods. This is mainly due to the lack of strategy that
can precisely describe the subtle atomic interactions of
intra-protein and protein–solvent interactions. Second,
searching for the correct state through the giant number of
possible conformations is a major challenge to current
computing power.
On theother hand, the bioinformatics based approaches,

that is, predicting target structures using information

collected from solved structures of other related proteins
which are deposited in the Protein Data Bank (PDB)
(Berman et al., 2000), have enjoyed considerable success.
The key procedures of bioinformatics-based approaches
include query-template sequence alignments, fold-recog-
nition, fragment-based structural assembly and multiple
template-based structural refinements. For practical rea-
sons, this note focusesmainly on the review of the successes
and challenges of the bioinformatics-based methods. We
also briefly introduce the current state of biological appli-
cation of protein structure predictions. In Table 1, we list a
summaryof the commonly usedweb-servers for automated
protein structure predictions.

Review of protein structure prediction
approaches

Protein structure prediction methods, depending on the
extent to which they exploit the known experimental
structures in the Protein Data Bank (PDB), have been
broadly classified into three categories: ab initio folding,
comparative modelling and threading. By definition, ab
initio (or de novo) modelling originally referred to the
methods that are based on the first principle laws of physics
and chemistry. The guiding principle is that the native state
of the protein lies at the global free-energy minimum
(Anfinsen, 1973). Therefore, ab initiomethods try to fold a
given protein from the query sequence using various force
fields and extensive conformational search algorithms.
However, little success has been demonstrated by using the
physicochemical principle-based approaches. The most
successful methods in this category still use evolutionary
and knowledge-based information to collect spatial
restraints and short structural fragments to assist struc-
tural assembly procedure (Simons et al., 1997; Xu and
Zhang, 2012). This category is now called ‘free modelling’
(FM) in the CASP experiments since many of the methods
donot purely rely on the first principles (Moult et al., 2009).
Despite of the progress in ab initio protein structure pre-
dictions, predicting 3D structure of proteins with 4150
residues is still a major challenge. This size dependence is
due to the higher number of secondary structure elements
in the large proteins,which results in amuchhigher number
of possible fold arrangements. The force field of most ab
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initio approaches has no specificity to recognise the correct
fold among the numerous fold candidates. Therefore,
increasing the accuracy of the force field and the power of
conformational search is essential to the solution of the
problem.
In comparative modelling (CM, also called homology

modelling), protein structure is constructed bymatching the
sequence of the protein of interest (target) to an evolution-
arily relatedproteinwithaknownstructure (template) in the
PDB. Thus, a prerequisite for CM technique is the presence
of a homologous protein in the PDB library. For the protein
targets where templates with a sequence identity450% are
available in the PDB, the homologous templates can be
easily identified with the sequence-template alignments
precisely conducted. The backbone models generated using
CM techniques can have a modelling accuracy of up to
1–2 Å RMSD from the native structure. For protein targets
which have templates with sequence identity ranging from
30 to 50%, the target-template alignment is less accurate but
themodels often have � 85%of their core regionswithin an
RMSD of 2–4 Å from the native structure, with errors
mainly occurring in the loop regions (Jauch et al., 2007).
However, when the target-template sequence identity drops
below 30%, modelling accuracy by CM sharply decreases
because of substantial alignment errors and the lack of sig-
nificant template hits. Because CM builds models by copy-
ing the aligned structures of the templates or by satisfying
distance/contact restraints from the templates (Marti-
Renom et al., 2000), an essential limit of the approach is that
the CMmodels usually have a strong bias and are closer to
the template structure rather than to the native structure of

the target protein (Read and Chavali, 2007; Tramontano
and Morea, 2003). Accordingly, one of the important
challenges to CM (and to all template-based methods) is
how to refine the models closer to the native structure than
the initial templates.
Threading (or fold recognition) refers to a bioinfor-

matics procedure that identifies protein templates in the
PDB library, which have a similar fold or similar structural
motif to the target protein. It is similar to CM in the sense
that both approaches try to build a structural model by
using the experimentally solved structures as template.
However, since many proteins with low sequence identity
can have similar folds, threading aims to detect the target-
template alignments regardless of the evolutionary rela-
tionship. The identification of precise target-to-template
alignments is a significantly nontrivial problem when the
sequence identity is low. Here, the design of accurate
alignment scoring function is essential to the efficiency of
the approaches. The commonly used alignment scores
include secondary structure match, sequence-structural
profile match (Bowie et al., 1991), sequence profile–profile
alignments (Rychlewski et al., 2000; Soding, 2005) and
residue–residue contacts (Skolnick et al., 2004; Xu et al.,
1999), with the best scoring alignments usually detected by
dynamic programming (Needleman andWunsch, 1970) or
hidden-Markov modelling (Eddy, 1998). Recently, it has
been demonstrated that the methods of composite scoring
functions including multiple structural features (e.g. solv-
ent accessibility, torsion angles etc) can achieve additional
gains in the protein template identifications (Wu and
Zhang, 2008; Yang et al., 2011).

Table 1 List of publicly available protein structure prediction tools

Name Web address Methodsa

On-line protein structure prediction servers

I-TASSER http://zhanglab.ccmb.med.umich.edu/I-TASSER/ TBM+FM

Robetta http://robetta.bakerlab.org/ FM

ModWeb https://modbase.compbio.ucsf.edu/scgi/modweb.cgi TBM

SwissModel http://swissmodel.expasy.org/ TBM

HHpred http://hhpred.tuebingen.mpg.de/hhpred TBM

chunk-TASSER http://cssb.biology.gatech.edu/skolnick/webservice/chunk-

TASSER/index.html

TBM+FM

QUARK http://zhanglab.ccmb.med.umich.edu/QUARK/ FM

Phyre http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index TBM

SAM-T08 http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html TBM

3D-Jury http://meta.bioinfo.pl TBM (meta–server)

LOMETS http://zhanglab.ccmb.med.umich.edu/LOMETS/ TBM (meta–server)

PSIpred http://bioinf.cs.ucl.ac.uk/psipred/ TBM+SS

Freely downloadable software for protein structure prediction

Modeller http://salilab.org/modeller/ TBM

I-TASSER http://zhanglab.ccmb.med.umich.edu/I-TASSER/download/ TBM+FM

Rosetta http://www.rosettacommons.org/software/ FM

HHsearch ftp://toolkit.lmb.uni-muenchen.de/HHsearch/ TBM

Scwrl4 http://dunbrack.fccc.edu/scwrl4/ SC

aTBM, template-based modelling; FM, free modelling; SS, secondary structure prediction; SC, Side-chain structure modelling.
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As a general trend in the field of protein structure pre-
diction, the borders between the conventional categories of
methods have become blurred. Many ab initio approaches
use spatial restraints or structural fragments detected by
threading (Bradley et al., 2005;Xu et al., 2011; Zhang et al.,
2003); both threading and comparative modelling
approaches rely on multiple sequence alignments. Mean-
while, since no single approach can outperform others for
all protein targets, the second trend of the field is the
prevalence of the so-called meta-server approaches
(Fischer, 2006). A common meta-server approach is to
generate a number of models by multiple programs which
are developed by different laboratories, with the final
models then selected from the best ranking ones (Ginalski
et al., 2003; Wu and Zhang, 2007). Although different
approaches have been attempted in protein template and
model selections, the most efficient model selection
approach appears to be the consensus selection, that is, the
models that are most often generated by different methods
are usually the one that is the closest to the native (Wallner
and Elofsson, 2007; Zhang et al., 2010).

Rather than model ranking and selection, another effi-
cient meta-server based approach is to reconstruct protein
models using multiple template information, for example,
exploiting the spatial restraints and structural fragments
extracted from the multiple templates to guide the physics-
based structural assembly simulations. The final models
can thus have a refined quality compared to any of the
individual templates. This method represents the most
efficient and successful approach, as demonstrated by
community-wide benchmark results of the recent CASP
experiments (Das et al., 2007; Zhang, 2007; Zhou et al.,
2007). As a case study, we dissect in detail the pipeline of
such composite approach in the next section.

Pipeline of the Composite Protein
Structure Prediction: A Case Study

A typical composite protein structure prediction pipeline
involves five main steps (Figure 1): (a) identification of

Template library search

Yes

Initial models from
traget-template alignment

Structural assembly simulations

Model avaluation and selection

Final full-length atomic models

Fill unaligned regions
by ab initio modelling

Template available?
No

Initial models by
ab initio modeling

Target protein sequence

Figure 1 Pipeline of a typical composite protein structure prediction approach.
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template structures and construction of target-template
alignments; (b) construction of initial model from template
alignments with the unaligned regions constructed by ab
initio modelling; (c) reduced-level structural assembly and
refinement simulations; (d) atomic-level model con-
struction and refinement; and (e) model selection. Below is
a detailed explanation of the procedures.
Identification of templates and target-template alignment:

Identification of suitable template structures is invariably
the first step in the protein structure prediction pipeline. A
variety of approaches have been developed for the identi-
fication of suitable templates. The simplest approach is the
sequence level alignment based on the BLOSUM or PAM
mutation scales with the highest scoring alignment identi-
fied by the Needleman–Wunsch or Smith–Waterman
dynamic programming algorithms. When close homolo-
gous template proteins with sequence identities 30–40%or
higher are available in the structure library, models gen-
erated using this approach is generally of high accuracy.
However, as the target-template sequence identity falls
below the threshold, alignment and modelling errors rap-
idly grows (Figure 2a).

For most proteins, it is difficult to identify close
homologue in the existing structure library using the naı̈ve
sequence-to-sequencemethod.Most of the state-of-the-art
structure modelling methods therefore use sophisticated
threading algorithms to generate and score target-template
alignments. Construction of this sequence-to-structure
alignment is nontrivial and many algorithms use a com-
bination of both sequence and structure information. In
the threading program MUSTER (Wu and Zhang, 2008),
for example, a composite scoring function (for aligning ‘i’th
residue of the query to ‘j’th residue of the template) is
defined as:

Scoreði; jÞ¼Eseq_prof þ Esec þ Estruc_prof

þ Esa þ Ephi þ Ehydro þ Eshift

½1�

where the first term Eseq_prof represents the profile–profile
alignment score with the sequence profiles generated from
multiple sequence alignments of the target and template
sequences. The second term Esec computes the match
between the predicted secondary structure of query and
secondary structure of templates. The third term Estruc_prof

calculates the score of aligning the structured-derived
profiles of templates to the sequence profile of query.
The fourth term Esa counts for the difference between the
predicted solvent accessibility of query and solvent acces-
sibility of templates. The fifth and sixth terms (Ephi and
Epsi) count for the difference between the predicted torsion
angles (phi and psi) of query and those of templates.
The seventh term Ehydro is an element of hydrophobic
scoring matrix that encourages the match of hydrophobic
residue (V, I, L, F,Y,W,M) in the query and the templates.
And the last term Eshift is introduced to avoid alignment of
unrelated residues in local regions. Although the first
term is sequence-based information, the second to seventh
terms all correspond to the use of structural information.
The sequence and structural information are then com-
bined into a single-body energy term, which can be con-
veniently used in the dynamic programming algorithm
for identifying the best alignment between the query and
the template.
Since a single threading program often fails in identify-

ing the best template, it is wise to collect template align-
ments generated frommultiple threading programs, which
can increase the coverage of different templates. Mean-
while, the consensus information of the template align-
ments from multiple programs can be used to identify
better templates and structurally conserved residue
regions. One of the first meta threading servers is 3D-Jury
by Ginalski et al. (2003), which collects threading align-
ments from on-line servers of different laboratories
through internet queries. But due to the availability and
connection issues, the internet-based meta-servers suffer
from speed and completeness of result collections.
Recently, Wu and Zhang constructed the LOMETS meta-
server that has all threading programs locally installed,
which significantly improved the reliability and speedof the
meta-server approaches. LOMETS currently consists of
nine state-of-the-art threading programs based on a num-
ber of different alignment methods, including profile–
profile alignments (MUSTER, PPA, SP3, Sparks), hidden-
Markov models (HHsearch, SAM-T02), structural profile
(FUGUE) and contact-based alignment (PROSPECT2,
PAINT). A list of the most often used template identifi-
cation servers can be seen in Table 1. Further explanation
on the sequence alignment and template threading can also

(a) (b) (c)

Figure 2 An example of the template-based modelling by I-TASSER server for PAS domain from Burkholderia thailandensis (PDBID: 3mqo). (a) Initial target

model built by copying Ca coordinates from a nonhomology template (PDBID: 3lyx) identified by MUSTER, which contains multiple gaps; (b) full-length

model constructed by the I-TASSER Monte Carlo assembly simulations; (c) final atomic structural model after atomic structural refinement. The grey

background cartoon shows the X-ray structure.
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be found in. See also: Protein Tertiary Structures: Predic-
tion from Amino Acid Sequences
Construction of initial model using target-template

alignment: Once the template proteins are selected based on
the alignment scores, the next step is to generate initial
target models by copying the Ca XYZ co-ordinates of the
template residues to the target residues, for the aligned
residue pairs. Since the chain connectivity is required for
most methods, various methods are designed to construct
the structural models for the unaligned regions (Figure 2a).
For instance, I-TASSER builds the initial full-length
models by filling the gaps using a self-avoiding random
walk of Ca–Ca bond vectors of variable lengths from 3.26
to 4.35 Å. To guarantee that the last step of the random
walk can quickly arrive at the first Ca of the next template
fragment, the distance l between the current Ca and the first
Ca of the next template fragment is checked at each step of
the randomwalk; only thewalks with l53.54n are allowed,
where n is the number of remaining Ca–Ca bonds in the
walk. If the template gap is too big to span by a specified
number of unaligned residues, a big Ca–Ca bond is kept at
the end of the randomwalk and a spring-like force that acts
to draw sequential fragments closer will be applied in
subsequent structural assembly step.
Reduced-level structure assembly and refinement simu-

lations: Once an initial model is generated, refinement
simulations are conducted to reassemble the global topol-
ogy and the local structures of the protein chains (Figure2b).
The success of the refinement simulations depend on the

accuracy of the force field and the efficient of the search
engine. Although the physics-based atomic force fields can
provide a reasonable description of protein–atom inter-
actions in many aspects, the implementation requests
atomic-level representation which are often too slow to
refine proteins of a reasonable size. The knowledge-based
potentials, which are often in reduced forms and derived
from the statistical regularities of the structures in thePDB,
have shown power in both protein structure recognition
and fold assembly simulations (MacCallum et al., 2009;
Summa and Levitt, 2007), where appropriate selections of
reference states and structural features are proven to be of
critical importance (Skolnick, 2006).
Second, given the force fields, efficient identification of

the global energy minimum is nontrivial since most of the
composite force fields are characterised with numerous
local energy minima, which can easily trap the folding
simulations. One way of speeding up the computational
search process is to reduce the conformational entropy.
For example, in TOUCHSTONE-II (Zhang et al., 2003),
the authors constrained the conformational change of
protein structure on a lattice system. In Rosetta (Simons
et al., 1997) and I-TASSER (Zhang, 2007), fragment
structures copied from the PDB templates are kept rigid
during the simulation. These techniques can help signifi-
cantly reduce the entropy of search because of constraint
on conformational movements.
Another way of increasing the conformational search

efficiency, which is also associated with the entropy

reduction, is to reduce the level of protein structure repre-
sentation. For example, in UNRES (Liwo et al., 2007), a
protein residue is represented by three units of Ca atom,
side-chain ellipsoid and peptide group. In I-TASSER (Roy
et al., 2010; Zhang, 2007), the residue is specified by two
units of Ca atom and the side-chain centre of mass. These
reductions of structure representation can dramatically
reduce the total number of conformations in the search
space. However, although the reduced models have
advantage of better conformational search, theymay suffer
from a lower accuracy of energy force field design.
Finally, a central theme in protein conformational

search is the appropriate design of conformational updat-
ing and optimisation algorithms, with examples including
Monte Carlo and molecular dynamics simulations, which
will essentially decide the efficiency of the overall con-
formational searches. The detailed discussions on the
various conformational searches can be found in many
structure modelling literatures (Liwo et al., 2007; Simons
et al., 1997; Xu and Zhang, 2012; Zhang et al., 2002).
Atomic-level model construction and refinement: Since

most structural reassembly methods represent the protein
chain by a reduced model, the detailed backbone and side-
chain atoms need to be added for full-length atomic model
construction, which is also to increase the practical
usability of the structural models (Figure 2c). Here, basic
rules of physical realism as observed in the experimentally
solved structures, including bond length and angle con-
straints, steric overlaps and hydrogen-bonding network,
should be satisfied. A number of algorithms have been
developed to construct the full-atomic models from the
reduced models, for example, Maxsprout (Holm and
Sander, 1991), Pulchra (Rotkiewicz and Skolnick, 2008),
REMO (Li and Zhang, 2009) and so on. Several programs
also attempt to refine the topology of the structural models
while adding the missed atoms (Zhang et al., 2011).
Model evaluation and selection: A number of structural

conformations (also called structural decoys) will be
resulted from the structural assembly simulations. The
objective of this last step is to select the high quality 3D
model of correct fold from all the possible alternative
conformations that are closest to the native structure. A
naı̈ve approach is to perform a stereo-chemical check and
determine how the model deviates from the basic regular-
ities of known experimental structures. However, the
structural models with the best local feature and physical
realism do not necessarily correspond to that with the
topology closest to the native state. Variants of all-atom
physics-based and statistical potentials are often used for
model quality estimation. Due to the importance, this
effort of model ranking and selection has resulted in a new
category called Model Quality Assessment Programs
(MQAP) in the CASP experiments (Cozzetto et al., 2009;
Fischer, 2006; Kryshtafovych et al., 2011) which aims to
identify the bestmodels fromall the structures generatedby
the community of predictors. So far, the best method for
model selection in MQAP is that based on consensus, that
is, supposing that the models generated by most programs
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have on average the best quality. Accordingly, structural
clustering is a popular tool for model selection in many
structural prediction pipelines (Roy et al., 2010; Simons
et al., 1997). One such clustering tool is SPICKER which
was designed to find the structural decoys which have the
most number of neighbours in a hierarchical way (Zhang
and Skolnick, 2004a, b).

Applications of Protein Structure
Predictions

Thebiological usefulnessof themodels relies on theaccuracy
of the structure prediction (Figure 3). For example, models
generated byCMusing close homologues, usuallymeet the
highest structural requirement and can be successfully used
for studying the effect of SNP or mutations, designing new
proteins using site-directed mutagenesis and screening
compound libraries for structure based drug-discovery
(Zhang, 2009). Of note, Sali and colleagues (Schlessinger
et al., 2011) recently screened the KEGG Drug library
against themodel of the norepinephrine transporter (NET)
generated by CM, leading to the discovery and experi-
mental validation of a novel ligands for NET. Another
important application of these high resolutionCMmodels,
has been shown by Tramontano and co-workers (Giorgetti

et al., 2005), where models with GDT-score 40.84 were
successfully used to obtain the phase information of the X-
ray diffraction data by molecular replacement (MR). The
authors found that the MR performance depends on the
overall quality of the models, rather than on the local
structures. Moreover, the best available structural tem-
plates identified by threading were much less successful in
MR than the complete models, which buttress the
importance of structural refinement in protein structure
prediction.
Medium-resolution models, roughly in the range of

2.5–5 Å RMSD to native structure, are typically generated
by threading and CM using distantly homologous tem-
plates. These models can be used for identifying the spatial
locations of functionally important residues, such as
active/binding sites and sites of disease-associated muta-
tions. For example, Arakaki et al. (2004) assessed the
possibility of assigning enzyme commission (EC) number
by matching the active site motifs gleaned from structure
decoys of various resolutions, and found that models of
3–4 Å resolution can be used to assign the first three digits
of the EC number with an accuracy of 35%, whereas the
accuracy drops down to 22% when models of 4–5 Å are
used.
Even models with lowest resolution from otherwise

meaningful predictions, that is, models with an approxi-
mately correct topology, predicted using either ab initio
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approaches or based onweak threading hits have a number
of uses, including protein domain boundary identification,
topology recognition and family/superfamily assignment.
For instance,Malmstrom et al. (2007)modelled 3338 small
protein domain (5150 residues) proteins in the yeast
Saccharomyces cerevisiae genome using ROSETTA; the
SCOP superfamily assignment was generated for 404
domains with trustable confidence scores, based on the
structural comparison between the predicted models and
the SCOP structures. An additional 177 assignments
were made after integrating the Gene Ontology (GO)
annotations.
One of the main impetuses for predicting protein struc-

tures is to use them for structure-based functional anno-
tation. A convenient approach to the structure-based
functional assignment involves global structural com-
parison of protein pairs for fold recognition and family
assignment (Malmstrom et al., 2007; Zhang et al., 2006),
which in many cases can be used to correctly infer the
function. However, it is also recognised that the relation-
ship between structure and function is not always
straightforward, as many protein folds/families are known
to be functionally promiscuous (Roy et al., 2009), and
different folds can perform the same function. When the
global structures are not similar, functional similarity may
arise due to the conserved local structural motifs, which
perform the same biochemical function, although in dif-
ferent global structural frameworks. In a recent develop-
ment, Roy and Zhang (Roy and Zhang, 2012) showed that
using low to medium resolution receptor structures and a
combination of local and global structural similarities,
ligand binding pockets can be identified in 65% of cases
with an average error of 2 Å.Without knowing the ligand a
priori, the ligand interacting residues assignment can be
made with an average Matthews correlation coefficient of
0.60 and precision of 0.73.

Challenges of Modelling
Transmembrane and Disordered
Proteins

Despite the progress in protein structure prediction, many
serious challenges need to be addressed. For instance, in the
ab initio structure prediction category, we have no success
in modelling medium-to-large size proteins with 4150
residues. Similarly, in the template-based modelling
(TBM) category, the refinement of predicted models
beyond the best available templates is amajor limitation. In
the following, we review the relatively new emerging chal-
lenges in modelling the transmembrane proteins and the
intrinsically disordered proteins.

Structure modelling of membrane proteins

Approximately 20–25%of proteins coded in the sequenced
genomes are transmembrane proteins (TMP) (Krogh et al.,

2001). Transmembrane proteins have diverse functional
roles, which include the involvement in nutrient and
metabolite transport, information flow, as well as energy
production. Not surprisingly, TMPs are the most import-
ant targets for developing new pharmacological agents.
However, despite of the rapid growth in the PDB library,
TMPs represent only 52% of all known structures in the
PDB, because they are both hard to crystallise and
intractable by NMR.
Most of the existing bioinformatics tools for studying

membrane protein structure are focused on predicting
either (a) the location of trans-membrane domain, or (b)
their topology, that is, the cellular location of N- and
C- terminus of the polypeptide chain. These predictions are
useful for the designing of further experiments to unravel
the location of loops and number of trans-membrane seg-
ments. But the structural details are stillmissing in these 2D
models, and 3D structure modelling of TMPs is usually
required in the experiments.
The structure prediction of transmembrane proteins is

generally considered more difficult than the globular ones,
because of the lack of homologous protein structure in the
template structure library. Moreover, the spatial profile of
hydrophobic residues in TMPs are inverted compared to
the globular proteins, which contributes negatively to the
scoring functions of most protein structure prediction
algorithms designed for globular proteins, as they promote
hydrophobic residues towards the interior of the protein.
Meanwhile, TMPs are on average 4200 residues, which
poses a formidable challenge to ab initio structure predic-
tion because of the combinatorial complexity. The limi-
tations have been partially alleviated with the development
of hybrid methods that combine ab initio fragment
assembly and sparse experimental restraints. For example,
FILM by Pellegrini-Calace et al. (2003) developed a
membrane specified potential which was combined with
the ab initio structural assembly approachand able to fold a
handful of small transmembrane proteins in 3–7 Å. Zhang
and Skolnick (2004a, b) used TOUCHSTONE-II to reas-
semble the template fragments as identified by threading
and successfully fold 6 out of 18 nonhomologous TMPs
5300 residues with a RMSD below 6.5 Å. Recently, Barth
et al. (2009) showed that models within 4 Å can be gener-
ated for transmembrane proteins of 190–300 residues, by
constraining the helix–helix packing arrangements at
particular positions as predicted from sequence or identi-
fied by experiments.
Although promising results have been demonstrated by

the hybrid ab initio fragment assembly approaches, the
accurate modelling of large-scale transmembrane proteins
still rely on the presence of experimental template proteins.
Fortunately, for G protein-coupled receptors (GPCRs)
which comprise the largest family of TMPs and are con-
sidered as themost dominant drug targets, several proteins
have been recently solved with the structures deposited in
the PDB library (Cherezov et al., 2007; Palczewski et al.,
2000). These structures provide important insights about
the spatial arrangements of functional residues, which can
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be used for mutational analysis and ligand-docking
experiments of other homologous GPCR proteins (Zhang
et al., 2006). For example, in the recent community wide
GPCR Dock 2010 experiment, the structures of three
human GPCRs complexes: (1) Dopamine D3/eticlopride
complex, (2) CXCR4/IT1t complex and (3) CXCR4 with
CVX15, were solved and the participing predictors were
asked to model the receptor structure and dock the co-
crystallised ligand before the structures were released
(Kufareva et al., 2011). This experiment provided a unique
opportunity to objectively examine both the quality of the
receptor structure modelling and ligand docking on mod-
elled GPCR structures. The predicted receptor structure
for the three complexes using I-TASSER had RMSDs of
1.6 Å, 2.27 Å and 2.82 Å to the crystal structures in the
transmembrane region (Figure 4). Despite the high quality
of the receptor models, the docked ligand conformation in
these receptors had anRMSD of 3.42 Å, 9.78 Å and 8.88 Å
for D3/eticlopride, CXCR4/IT1t and CXCR4/CVX15,
respectively, which highlight the difficulty of low-reso-
lution structure-based ligand docking. In D3/eticlopride
complex, the binding pocket mainly lies in the transmem-
brane region, and therefore the ligand has a lower RMSD.
Contrarily, the ligands in CXCR4/IT1t and CXCR4/
CVX15 interacts extensivelywithECL2,which shows large
structure variability in templates and was therefore pre-
dicted incorrectly. Improvements in the accuracy of loop
modelling ofGPCRswill therefore have a profound impact
on the accuracy of ligand-binding mode predictions and
drug design.

Modelling of disordered proteins

The centre of the sequence-to-structure-to-function para-
digm is the hypothesis that the amino acid sequence
encodes for a structurally ordered 3D structure, which
determines the functions of the proteinmolecule.However,

it is increasingly realized that the intrinsic disordered pro-
teins (Dunker et al., 2001) are common in many genomes,
where either a part of protein (Intrinsic Disordered
Regions) or sometimes the entire protein (Intrinsic Dis-
ordered Protein) exists as an ensemble of variable struc-
tures, which helps them to perform multiple functions by
utilising their large intermolecular interfaces. Due to the
inherent flexibility, it is difficult to characterize the struc-
ture of the disordered regions using the traditional X-
ray crystallography or NMR techniques. Very often, the
disordered residues can become ordered upon binding.
Structure predictions of disordered proteins are mainly

focused on the identification of the disordered/ordered
regions along the sequences (Monastyrskyy et al., 2011).
The first method for computational disorder prediction
was developed 15 years ago (Romero and Dunker, 1997),
which was based on neural network training on a verity of
sequence-based features to recognise the disordered
regions. Since then, more than 50 methods to identify dis-
order have been developed. The major differences among
themethods are in the training algorithms (neural network
or support vector machine) and feature selections which
includes residue-level and window-level information cal-
culated from amino acid sequences, sequence profile from
multiple sequence alignments, secondary structure, solvent
accessibility, torsion angle, etc. Although the performance
of different disorder prediction algorithms has become
converged due to the similarity in methodology develop-
ment, it was recently demonstrated that the information
frommultiple structure comparisons can help improve the
accuracy of disorder prediction, that is, the regions that are
structurally conserved within multiple models tend to be
ordered, whereas the structurally varied regions in the
models are most associated with disorder (McGuffin,
2008). The recent progress in the disorder structure pre-
dictions can be found in recent review (He et al., 2009) and
the CASP assessment (Monastyrskyy et al., 2011). A

Dopamine D3/eticlopride
complex(a) (b) (c)

CXCR4/ITit
complex

CXCR4/CVX15
complex

Figure 4 Predicted protein–ligand complexes using I-TASSER and BSP-SLIM in GPCR-Dock 2010. (a) Dopamine D3/eticlopride complex; (b) CXCR4

chemokine receptor with compound IT1t; and (c) CXCR receptor with peptide CVX15. The native ligand binding pose is shown in green and the predicted

ligand pose in red.
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conceptual explanation of the intrinsically disordered
proteins was given in. See also: Intrinsically Disordered
Proteins

Conclusion

We have presented a general overview of the three cat-
egories of approaches used for protein structure prediction,
including comparative modelling, threading and ab initio
folding. Despite the significant efforts made in the field,
template-based modelling, which construct models based
on other solved protein structures, is the only reliable
method for high-resolution predicted protein structure.
Nevertheless, composite approaches that combine tools of
threading, fragment assembly, ab initio modelling and
structural refinements have demonstrated powers in mod-
elling proteins of different homology level of protein
sequences. A commonly used pipeline for the composite
protein structure prediction was dissected, for illustrating
the procedures.
Predicted protein structures have been extensively used

for ligand screening and structure based drug-design,
detecting functional site residues and designing muta-
genesis experiments, helping molecular replacements, or
identifying the impact of disease-associated SNPs and
point mutations. Even for the models built from weakly
homologous templates or by ab initio modelling, correctly
predicted folds have been used for assigning protein
families or identifying approximate domain boundaries.
Although experiment structures are undoubtedly the most
desirable, predicted models span many needs of most
biologists.
Membraneproteins and intrinsically disordered proteins

are often ignored by the mainstream protein structure
prediction community. However, they play a crucial role in
many cellular processes. Developing efficient algorithms
for modelling these proteins will enlarge the scope of pro-
tein structure predictions, which will help us better
understand the molecular basis of their functions.
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