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INTRODUCTION

Threading-based comparative modeling approaches1–4

have demonstrated considerable success in the protein

tertiary structure prediction. But the template-based

comparative modeling methods cannot generate reliable

models if there are no homologous structures in the Pro-

tein Data Bank (PDB)5 or if the query-template align-

ments cannot be appropriately identified. For the targets

in the so-called midnight zone, ab initio folding is

needed for constructing the protein models from scratch.

There have been a variety of methods that were devel-

oped for ab initio protein-structure construction, ranging

from atomic-level molecular dynamic simulation6,7 to

reduced-level physics-based8,9 and knowledge-based10–12

Monte Carlo assembly, to topology-level fold enumera-

tion,13 and to residue-contacts constrained conforma-

tional reconstruction.14,15 Among these approaches, the

fragment-based assembly method, as proposed by a num-

ber of authors10,16–18 has demonstrated notable success,

especially in the community-wide critical assessment of

protein structure prediction (CASP) experiments. Com-

pared to atomic-level simulations, the fragment insertion

and replacing movements help reduce the entropy of

conformational search and yet maintain the high quality

of local structures, because the fragments are directly

extracted from experimental structures. The lengths of

the structural fragments are used differently by different

methods. In both BE16 and Rosetta,10 3 and 9 mer frag-

ments were exploited. In QUARK,12 fragments of contin-

uous lengths in 1–20 residues were used.

Because ab initio modeling targets usually have no

appropriate global templates, many authors tried to iden-

tify segmental substructures, which have various lengths

following the nature of query-template alignments. For

instance, SEGMER19 and chunk-TASSER20 generated

structural fragments for various sets of secondary structure
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ABSTRACT

Fragment assembly using structural motifs excised from other solved proteins has shown to be an efficient method for ab

initio protein-structure prediction. However, how to construct accurate fragments, how to derive optimal restraints from

fragments, and what the best fragment length is are the basic issues yet to be systematically examined. In this work, we

developed a gapless-threading method to generate position-specific structure fragments. Distance profiles and torsion angle

pairs are then derived from the fragments by statistical consistency analysis, which achieved comparable accuracy with the

machine-learning-based methods although the fragments were taken from unrelated proteins. When measured by both accu-

racies of the derived distance profiles and torsion angle pairs, we come to a consistent conclusion that the optimal fragment

length for structural assembly is around 10, and at least 100 fragments at each location are needed to achieve optimal struc-

ture assembly. The distant profiles and torsion angle pairs as derived by the fragments have been successfully used in

QUARK for ab initio protein structure assembly and are provided by the QUARK online server at http://zhanglab.ccmb.

med.umich.edu/QUARK/.
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(SS) elements, where more accurate spatial restraints can

be derived from the local fragments than that from the

global threading alignments. The position-specific struc-

tural fragments were also directly used by FRAGFOLD,21

TASSER,22 and I-TASSER23 for structure assembly simu-

lations.

There are two strategies for fragment generations.

The first is to generate the position-specific fragments

for each piece of query sequence by the query-to-tem-

plate sequence/profile matches.12,24 The second

method is sequence-independent, which gathers frag-

ments of various lengths and conformations by cluster-

ing the structures from the PDB library.25,26 Because

these fragments are independent of their residue types,

they can be placed at any position of the query sequence

for folding simulation. Although the total number of

fragments generated in the second strategy is small,

because the conformation at each location is more

diverse, it can have the advantage in modeling the

structurally variable regions such as loops where the

threading-based methods may have a shortage of frag-

ment conformations.

As a basic building block of the structure modeling,

the quality of the fragments and the accuracy of the re-

sultant restraints are essential for the success of ab initio

structural predictions. Many open questions remain in

the fragment generation and selection as well as their

impact to the ab initio folding result, which have not

been clearly studied and systematically answered, partly

due to the lack of a clearly defined criterion to evaluate

the quality of the fragment structures. For example, how

to generate and select high-resolution fragments close to

their native conformations? How to extract the optimal

restraint information from (multiple) fragments? What is

the optimal fragment length for ab initio structural as-

sembly? How many fragments should be exploited at

each position of the sequence? By now, existing works

have partly addressed some of those problems. For

instance, Handl et al.27 analyzed the effects of fragment

length and move size to the folding accuracy of different

types of proteins. HHfrag focused on generating precise

fragments with variable lengths by HMM profile compar-

ison.28 In this work, we aim to systematically address all

the above-mentioned problems.

We first generate position-specific fragments of dif-

ferent lengths by using a multiple-feature gapless-

threading method. Distance profiles and clustered tor-

sion angle pairs are then derived from the generated

fragments via consensus analysis. The method is bench-

marked on a set of 145 nonredundant proteins, where

systematic analysis is performed to carefully examine

the above-mentioned basic issues. Structural fragments,

distance profile, and torsion angle pairs were also tested

in the CASP9 experiment through the recently

developed QUARK ab initio structural assembly algo-

rithm.12,18

MATERIALS AND METHODS

Template database construction

To generate the fragment structure library, we first

downloaded all the protein-structure files from the PDB

website and chose those having resolution better than 2.0

Å. Then, we split the PDB entries into chains and only

keep the longest chain for each entry if chains in the entry

are homologous to each other (sequence identity > 30%).

We calculated the sequence identity Iij between each pair

of the remaining protein chains i and j by using NW-align

(http://zhanglab.ccmb.med.umich.edu/NW-align/). Here, Iij

is defined as the number of identical residues between i

and j divided by the length of sequence j. The accumu-

lated identity AIij for chain i is defined by:

AIi ¼
XN

j¼1
Iij ð1Þ

where N is the total number of protein chains for consid-

eration.

The N chains are then sorted by the accumulated iden-

tities in a descending order, and the protein chains from

the top to the bottom of the list are chosen to construct

a nonhomologous structural library, with discarding the

chains homologous (sequence identity > 30%) to the

selected chains in the pool. Because the protein chains in

the top are often longer and have more homologous

neighbors than those in the bottom, this procedure helps

to build a more representative library covering the major-

ity of protein structures. As a result, 5637 protein chains

are collected. If we build the database from the bottom

of the list, protein chains that are first chosen belong to

the outliers of the whole list.

Gapless-threading method for
position-specific fragment generation

Fragment structures are generated by a gapless-thread-

ing algorithm, which aligns each fragment of the query

sequence with the templates using multiple feature

scores, which include sequence profiles, SS type, solvent

accessibility, backbone torsion angles, and residue-based

structure profile.

Sequence frequency profile for the query sequence is

extracted from the multiple sequence alignment searched

by PSI-BLAST29 through a nonredundant sequence

library (ftp://ftp.ncbi.nih.gov/blast/db). Henikoff and

Henikoff30 weighting is used to eliminate the redundant

sequences. For each template protein, the sequence pro-

file is constructed by a similar procedure but specified by

the position-specific substitution matrix.

SS types of the query sequence are predicted by

PSSpred (http://zhanglab.ccmb.med.umich.edu/PSSpred), a

composite neural network (NN) training program based

on the Rumelhart error backpropagation method.31 SSs

for template proteins are assigned by DSSP.32
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Solvent accessibility and real-value phi and psi angles

for the query sequence are predicted by separated two-

layer NN programs, which were trained by PSI–BLAST

checkpoint file and three-state SS types. The accuracy of

torsion angle prediction by this program is higher than

that of ANGLOR33 on our benchmarking test set at

http://zhanglab.ccmb.med.umich.edu/QUARK/list.txt, espe-

cially for the psi angle where the absolute error decreases

from 44.768 to 37.848 (Table I). The solvent accessibility

for template structures is calculated by EDTSurf,34 which

generates triangulated solvent-accessible surface using the

fast Euclidean distance transform technique, where the sol-

vent accessibility of each residue is defined as the ratio of

the accessible surface area in protein to the maximum ac-

cessible surface area of this residue type. Solvent accessible

surface area of each residue can also be estimated by

DSSP. We find that it has a very high correlation (Pear-

son’s correlation coefficient 5 0.994) with that calculated

by EDTSurf based on the 145 test proteins.

Finally, structural profile for each residue in the tem-

plate is defined as the frequency matrix of 20 residue

types at each position, calculated from the most similar

fragments retrieved from the PDB, by matching multiple

structural features of RMSD (root mean squared devia-

tion), torsion angles, residue depth, SS, and solvent

accessibility.35,36

For each fragment of query sequence, we identify the

best-fitting structural fragments by scanning the target

sequence through the representative template library

using gapless threading. Fragments of each length are

probed along the sequence using a sliding window. Top

200 fragments of the highest alignment scores are

retrieved by a composite scoring function at each posi-

tion. The scoring function f(i,j) for aligning the ith resi-

due in the query with the jth residue in the template is

given by:

f ði; jÞ ¼
X20

k¼1
Pqði; kÞLt ðj; kÞ þ w1dðssqðiÞ; sstðjÞÞ

� w2jsaqðiÞ � sat ðjÞj þ w3

X20

k¼1
SPt ðj; kÞLqði; kÞ

� w4juqðiÞ � utðjÞj � w5jwqðiÞ � wtðjÞj ð2Þ

Here, Pq(i,k) is the frequency profile of the query

sequence while k runs through 20 amino acids. Lq(i,k)

and Lt(j,k) represent the log-odds profiles (Position-Spe-

cific Substitution Matrix from PSI–BLAST) of query and

template sequences, respectively. The first term in the

scoring function is the dot-product of the frequency pro-

file of the query sequence and the log-odds profile of the

template. The higher the value is, the more consistent

their profiles are. This profile–profile alignment score has

been proved to be much better than sequence-profile

alignment score for fold recognition.37 sst(j), sat(j), ut(j),

and wt(j) stand for the SS type, solvent accessibility, phi,

and psi torsion angles of the jth residue in the template.

ssq(i), saq(i), uq(i), and wq(i) are those predicted for the

ith residue of the query. Structure profile SPt(j,k) is the

frequency of having residue type k at the jth position of

the template. d(x,y) is the delta function. wi (1 � i � 5)

is the weighting factor of each feature. We performed an

exhaustive search of the weighting parameters through a

five-dimensional grid system and obtained w1 5 2, w2 5

6, w3 5 2.5, w4 5 12 and w5 5 10, which resulted in the

best average RMSD of fragments on 88 independent

training proteins, which are also listed at http://zhan-

glab.ccmb.med.umich.edu/QUARK/list.txt.

Fragment-based distance profile derivation

Template-based residue–residue distance and contact

maps have been frequently used to constrain the model-

ing simulations in protein structure prediction.11,38 For

the ab initio targets, however, there are generally no

long-range distance/contact predictions due to the lack of

homologous global templates. Here, we propose the con-

cept of distance profile, which aims to derive long-range

pair-wise distance and contact restraints from multiple

fragments.

Let us consider two residues (i and j) at the query

sequence, where top 200 fragments are generated for

each position based on Eq. (2), that is, Fi
k (k 5 1,. . .,

200) corresponding to fragments at the position i, and F
j
l

(l 5 1,. . ., 200) to that at j (Fig. 1). For the kth and lth

fragments, the residues aligned with i and j are noted as

aik and ajl, respectively. Because the fragments at posi-

tions i and j were collected independently, most of the

top scoring fragments at the two positions are from dif-

ferent template proteins. For those fragment pairs (Fi
k

and F
j
l ), which come from the same PDB protein, we

assume that it has a high probability that the distance

(dij) between aik and ajl on the template is similar to the

distance between i and j in the query sequence, because

these residue pairs are assumed to have similar local

interaction environment on different proteins. Here, we

only count the residue pairs with a distance below 9 Å,

because the short-distance interactions, for example,

backbone and side-chain hydrogen bonding and disulfide

bonds, tend to be more conserved than the long-distance

ones in the local interaction environment.

To construct the distance profiles, we generate a histo-

gram for every residue pair in the query from the fragment

Table I
Real-Value Torsion Angle Prediction on 145 Test Proteins

Error ANGLOR (8)
Two-layer

NN (8)
First cluster

center (8)

Best in top
30 cluster
centers (8)

phi 23.79 23.46 24.70 6.42
psi 44.76 37.84 39.23 6.50
(phi, psi) 55.59 49.83 51.91 10.15

Note that the circular nature of the torsion angles has been considered in the cal-

culation.
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pairs aligned with the target residue pair. The distance bin

of the histograms is set to 0.5 Å. If the distance between a

pair of residues in the template falls in a bin, the total num-

ber in the bin will increase by one. Figure 2 shows two typi-

cal examples of distance profiles. More often than not, the

distance histogram increases monotonically with the dis-

tance, due to the trivial entropy increase of larger distances

even if there is no interaction between the residue pairs (see

the curve with circles in Fig. 2). To decrease the false-posi-

tive rate, we discard all residue pairs with such distance his-

togram from our consideration.

The second curve with square in Figure 2 is of more

interest to us, where a histogram peak appears in the

middle range of the distance (dij 5 6 Å in this example).

The shape of this curve indicates that a large number of

residue pairs from different template proteins have the

same distances around 6 Å. These residue pairs in the

template proteins may have different sequence separa-

tions, but their spatial distances are similar. Because all

the residue pairs are aligned with the same residue pair

in the query sequence, it should have a high possibility

that the query residue pair may have this distance.

Because the distance profiles are specified with a broad

range of distance distributions, they can provide more

detailed spatial information than the traditional binary

contact predictions, which only tell the distance below or

above a distance cutoff.39–41 When considered as energy

constraints, they help avoid the inaccuracy of a single

averaged distance. In the second profile of Figure 2, for

instance, the average distance is near 5.5 Å. A restraint at

this average distance represents actually an unfavorable

channel of the distance histogram. In the QUARK ab ini-

tio-folding simulation,12 we use negative logarithm of

the counts in the distance profiles as the energy

restraints, which can correctly simulate the multiple dis-

tance peaks in the profiles (at 5 and 6 Å in this exam-

ple).

In addition to the middle-peak filter, several condi-

tions are used for further filtering the distance profiles.

First, residue pairs with a separation in the query

sequence <5 amino acids are discarded. Second, if the

total number of residue pairs appearing in the templates

Figure 1
Fragments Fi

k and F
j
l coming from the same global template may have conserved contact interaction as that in the query residue pair.

Figure 2
Two typical distance profiles for a given residue pair.
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is <20, the distance profile for the corresponding residue

pair is omitted. Third, sequence separation of the residue

pair in the template should be comparable to that in the

query sequence, that is, the sequence interval between the

two residues in the template in Figure 1 should satisfy

the condition 0.8 3 |i – j| < |aik – ajl| < 1.2 3 |i – j|.

On the basis of this condition, we ensure that long-range

contacts (|i – j| is high) are predicted from residue pairs,

which also have long sequence separations. Fourth, no

cross alignment is considered, that is, (j – i)/(aik – ajl)

should be larger than 0.

Torsion angle pair clustering

For a given residue in the query sequence except for

the N and C terminals, we can have M * N torsion angle

pairs (phi and psi) extracted from the top M fragments

of length N. In the fragment-based ab initio-folding sim-

ulations, the fragment replacement movement corre-

sponds to the replacement of all the phi/psi angles and

the associated bond-lengths and bond-angles of the decoy

structure by those from the template structural frag-

ments. Because the number of torsion angle pairs

extracted from fragments is huge, it is impossible to

cover all phi/psi phase space within a limited time of the

ab initio simulations. To increase the efficiency of search,

we prepare a lookup table, equipped with a nonredun-

dant set of torsion angle pairs.

We use two clustering algorithms, SPICKER42 and k-

means,43 to generate the nonredundant (phi, psi) pairs

at each position. SPICKER decides the number of clus-

ters according to the distribution of data dynamically.

k-means algorithm outputs converged k clusters in an

iterative refinement from initial seeds. At most 30 cluster

centers are chosen, which are also sorted based on their

cluster sizes. Because the real-value torsion angle pairs

are directly taken from template structures, the inherent

correlations are automatically taken into account; this is

different from the predictions by NN or Supporting

Vector Machines where the phi/psi torsion angles are

usually predicted separately.

RESULTS AND DISCUSSION

Benchmark test set

We collected 145 small to medium-sized proteins from

the PDB with length between 70 and 150 residues as the

test set. These proteins are assigned as hard targets by

LOMETS44 as no significant template alignments can be

detected by any threading programs after excluding ho-

mologous templates with sequence identity > 30% to the

query sequence. Even though, there are still some homol-

ogous proteins in the template library that have similar

structure to the query but are not detected by threading.

To make sure that these proteins are not been used in

our testing, we added two additional strict filters to our

library. First, we exclude all templates that have a TM-

score > 0.3 to the target structure with the threading

alignments by the MUSTER program.35 Second, we run

TM-align45 to scan the target structure through the tem-

plate library and exclude all the templates that have a

TM-score > 0.5 to the target. Using these filters, we

guarantee that there are no templates in the template

library that may have similar sequences or structural

folds to the query proteins.

Accuracy of fragment structures

To examine the impact of different alignment features

to the accuracy of fragment identification, we include the

six energy terms in Eq. (2), one by one, to the gapless-

threading program and then compare the obtained frag-

ments to the native conformations. Table II lists the aver-

age RMSD of the first and top 200 fragments. We only

reported the RMSD of 9 mer fragments here on the pur-

pose of comparing with Rosetta 9 mer fragments later. In

the general case, the longer the fragments are, the higher

average RMSD will be, due to the fact that RMSD is a

sequence-length dependent measurement of protein

structure similarity (see Fig. S1 in the Supporting Infor-

mation).

On average, all energy terms have positive effect to the

fragment quality. The maximum RMSD improvement is

obtained when the SS match is added to the sequence

profile comparison, which results in a RMSD reduction

from 2.422 to 1.946 Å for the first fragment and 2.639 to

2.070 Å for the top 200. The alignments of solvent acces-

sibility and structure profile also have considerable con-

tribution to the accuracy of fragments. But the last terms

of phi/psi angles have the smallest contribution among

all the terms, probably due to the relatively low accuracy

of the prediction. Errors of the predicted features also

affect the best retrieved fragments as shown in the table.

However, performance of QUARK prediction is more

correlated with the quality of all the top fragments than

that of the best fragments, because fragment substitution

Table II
Fragment Accuracy by Different Scoring Terms in Eq. (2)

Features
hRMSD1ia

(�)
hRMSD200ib

(�)
r(RMSD200)c

(�)
hRMSDBid

(�) Ranke

1st 2.422 2.639 1.427 0.731 93
1–2nd 1.946 2.070 1.328 0.784 94
1–3rd 1.906 2.032 1.296 0.775 95
1–4th 1.868 1.987 1.279 0.772 95
1–5th 1.835 1.950 1.277 0.800 96
1–6th 1.811 1.907 1.265 0.864 98

aAverage RMSD of the first 9 mer fragments.
bAverage RMSD of the top 200 9 mer fragments.
cStandard deviation of the top 200 9 mer fragments.
dAverage RMSD of the best in the top 200 fragments.
eAverage rank of the best fragment among the 200 9 mer fragments.
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movement can hardly identify and accept the best frag-

ments. From Column 4, we find that the standard devia-

tion of the top 200 fragments becomes smaller when we

use more features. This is because the retrieved fragments

are more restricted by using those features.

Columns 5 and 6 of Table II show the average RMSD

and the relative rank of the best in the top 200 frag-

ments. Although nearly perfect fragment (RMSD < 1.0

Å) exists in the template library for almost all sequences,

the selection of the best fragment appears difficult, and

the average rank of the best fragment is close to random

(93–98th of 200). This is not unexpected, because all ho-

mologous templates have been excluded from the library,

and most of the energy features in Eq. (2), which essen-

tially originate from sequence or sequence profile com-

parisons, have no significant correlation with the similar-

ity of the fragment to the native in the low-RMSD

region. However, the overall quality of the top-scoring

fragments is still much better than the random selection,

which demonstrates that a general correlation of energy-

RMSD over the entire RMSD range still exists.

Rosetta program10 has two versions of template libra-

ries of 2001 and 2006, which contain 2229 and 6025 pro-

tein chains, respectively. The protein chains in the libra-

ries were idealized to contain only standard bond lengths

and angles. We run the Rosetta program that generates

fragments by matching the PSI–BLAST checkpoint file

and SS types. For the same set of benchmark proteins,

the average RMSD of the first 9 mer fragments is 1.966

and 1.987 Å, based on the small and large template

library, respectively, which is close to (or only slightly

worse than) our result 1.946 Å in Table II (Row 3), if we

only use the top two features of profile alignment and SS

match. The standard deviations of their top 200 9 mer

fragments are 1.336 and 1.323 Å separately, which are

also close to our result 1.328 Å.

Residue contact prediction derived from
distance profiles

The fragment-based distance profiles can be used to

deduce short-distance contact interactions of long-range

separated residue pairs. It is of interest to examine the

accuracy of these predictions compared to the traditional

sequence-based contact predictions by machine learn-

ing.39–41 For this purpose, we collect the residue contact

predictions from the distance profiles, which have the

peak corresponding to the distance bin < 8 Å, a distance

cutoff most frequently used in the contact prediction

assessments.46 The contacts are sorted based on the ac-

cumulative number of residue pairs in all the distance

bins < 8 Å. For each query sequence with length L, top

0.4L predicted contacts are selected for each of the three

contact orders, that is, |i – j| in [6, 11], [12, 24], and

>24, which result in 1.2L contact predictions in total for

mixed-order contacts.

Figure 3 shows the accuracy of contact predictions by

distance profile method using different lengths of frag-

ment structures. Although no global templates were used,

nontrivial contact predictions were achieved for all ranges

of contact orders. Generally, the contact accuracy is

higher when the sequence separation of the target resi-

dues is smaller. This is because more insertions and dele-

tions are involved in the residue pairs of larger separation

in both the query sequence and templates, which will

induce larger variation of contact possibility and bigger

error in contact prediction.

The trends of prediction accuracy regarding fragment

lengths are different for the four types of contacts. The

short-range contact prediction has the highest accuracy

when the fragment length is around 16. For the me-

dium-range contacts, the best fragment length is 22. For

long-range contacts, fragments in the range of [9, 20]

have the best accuracy. The overall mixed contact predic-

tion is most stable and accurate when the fragment

lengths are larger than 10.

Because no single fragment length is the best for all

the contact types, distance contacts of each type are

derived by fragments of the best length in each category.

In Table III, we show a comparison of the contact predic-

tions derived from the multiple fragments with that by

the two representative machine-learning methods,

SVMCON40 and SVMSEQ,39 both being publicly avail-

able software. The short and medium-range contact pre-

dictions from fragments have a comparable accuracy to

the machine-learning-based method. However, the con-

tact prediction in the long-range residue separation is

still worse than the latter.

The low accuracy of long-range contact prediction

from fragments is mainly because of the lack of templates

with similar fold to the query, because all homologous

Figure 3
Accuracy of contact prediction derived from nonhomologous fragments
in terms of fragment lengths.
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templates have been pre-excluded. In Column 5, we also

list the accuracy of contact predictions only using the

sequence filter, that is, sequence identity < 30%, which

has been mostly often used for excluding homologous

templates in protein structure-prediction studies.22,47

The resultant contact accuracy of the fragments outper-

forms the machine-learning-based predictions for short-

and medium-range contacts and becomes comparable for

long-range contacts. The high accuracy of short- and me-

dium-range contacts by the fragment-based method may

partially benefit from the super-SSs of templates, which

map to the short fragments at different positions. We

also summarized the native contacts for all the structures

in the template library. The ratios of residue pairs that

are less than 8 Å to the total number of residue pairs are

4.8, 3.2, and 0.8% for the three types of contacts, which

are much lower than the accuracies of predictions.

Because the performance of the contact prediction is

sensitive to the manual setting of template filters, to

examine the performance of the predictions in real case

ab initio folding, we tested the algorithms on 31 Free

Modeling (FM) targets/domains in CASP8 and CASP9

experiments. These targets were assigned in the FM cate-

gory, because there were no global templates detected by

any threading algorithms. The lower part of Table III

shows the comparison of the fragment-based and

machine-learning-based contact predictions. In the

former case, no sequence or structure filters were

implemented, but all templates solved after the CASP

experiment were excluded to mimic the CASP ab initio

predictions. To keep the consistency of the data, the

SVMCON result in the table for those CASP targets is

also calculated by its standalone program. It is slightly

different to the result submitted to the CASP, which was

evaluated as one of the best in CASP8 and CASP9.46,48

In the table, distance profile-based method outperforms

the machine-learning-based methods for short and

medium-range contacts and has a similar performance

for the long-range contact prediction. Here, although the

sequences of FM targets are not homologous to any tem-

plate structure, their folds may still be similar to some

existing templates. Distance profile-based method makes

use of the retrieved fragments from those templates and

successfully predicts some of the long-range contacts.

These data demonstrate the potential usefulness of the

fragment-based methods in both contact and structure

prediction for ab initio protein targets.

Finally, we examine the complementary of the frag-

ment-based and machine-learning-based contact predic-

tions. For the 31 FM targets, the total numbers of correct

long-range contacts predicted by SVMCON and

SVMSEQ are 192 and 198, among which 102 contacts

are commonly predicted by both methods, that is, over-

lap rates of 53.1 and 51.5%. The high-overlap rates are

expected, because the two predictors use similar algo-

rithm although they were trained by different datasets.

However, the overlap rates are 28.9 and 29.2% between

the fragment-based method and SVMCON and 30.9 and

30.3% between the fragment-based method and SVMSEQ

separately. Therefore, the fragment-based contact predic-

tions are highly complementary to that of the machine-

learning-based methods, and a combination of both

should significantly increase the coverage of the contact

prediction and the yield of ab initio folding. Overlap

rates between the three methods are high (>60%) for

short- and medium-range contacts.

Because distance profile also predicts the exact value

for every residue pair, we further examine those correctly

predicted pairs whose real distances are less than 8 Å.

The average error between the exact distance and the dis-

tance in the distance profile that has the highest proba-

bility is 0.83 Å, while the error of distance prediction

randomly chosen from [4 to 8 Å] is 1.24 Å.

Blind test of fragment-based distance
profiles in CASP9

In CASP9, models in ‘‘Zhang_Ab_Initio’’ human group

were generated by the QUARK ab initio program,12

which exploits the distance profiles as restraint to guide

the long-range atomic interactions. In Figure 4, we show

three typical examples from the FM category, where pair-

wise distances predicted by the distance profiles played

an important role in the successful QUARK ab initio

structural assembly.

First, Target T0553-D2 in Figure 4(a) is a small helical

domain, which contains five a-helices. The QUARK

model has TM-score 5 0.59 and RMSD 5 4.22 Å to the

native structure, which is the best among all groups. The

relative orientation of the five helices was correctly pre-

dicted in the model, which is mainly due to the fact that

the pair-wise helix contacts, as specified by the short-

range distances [see red lines in Fig. 4(a) and data in

Table III
Summary of Contact Predictions by Different Methods

Contact-range SVMCON SVMSEQ
QUARK

filtered-Ia
QUARK

filtered-IIb Numc

145 benchmark proteins
Short 0.341 0.388 0.385 0.390 0.4L
Medium 0.288 0.299 0.300 0.307 0.4L
Long 0.211 0.212 0.136 0.214 0.4L
Mixed 0.292 0.297 0.274 0.300 1.2L
Contact-range SVMCON SVMSEQ QUARK without

fragment filter
Numc

31 FM proteins in CASP
Short 0.301 0.329 0.354 0.4L
Medium 0.267 0.256 0.280 0.4L
Long 0.134 0.138 0.135 0.4L
Mixed 0.239 0.244 0.249 1.2L

aFilter template proteins of sequence identity > 30%, TM-score > 0.3 by MUS-

TER, and TM-score > 0.5 by TM-align.
bFilter template proteins of sequence identity > 30%.
cNumber of contact predictions with L being protein length.
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Supporting Information Table SI], were precisely pre-

dicted in the fragment-based distance profiles. The C-ter-

minal was however misplaced in the model, because there

were no correct restraints between this terminal and the

other helical region.

Second, T0571-D2 is a medium-sized b-protein of 135

amino acids where no group (including QUARK) cor-

rectly predicted the fold of the target for the entire

sequence. The Zhang_Ab_Initio model by QUARK had

the middle region of four b-strands correctly predicted,

which has a TM-score 5 0.61 and a RMSD 5 2.91 Å

[Fig. 4(b)]. From the distance profile data, QUARK

obtained 50 accurate distance profiles between short-

range and medium-range residue pairs (Supporting In-

formation Table SI), which is the major contribution to

the success of modeling this difficult b-protein target.

Finally, T0604-D1 is the first domain of the VP0956

protein from vibrio parahaemolyticus. The Zhang_Ab_Ini-

tio model by QUARK has a TM-score 5 0.48 and RMSD

5 4.41 Å for the entire domain as illustrated in Figure

4(c). There are eight long-range distance restraints that

were correctly identified by the distance profiles (see bot-

tom rows of Supporting Information Table SI). These

data help QUARK to generate hydrogen bonds between

the first and the third b-strands. The two short helices in

the model also have correct orientations due to the

short-range distance restraints as predicted by the

distance profiles. However, the C-terminal b-strand in

the model did not form the antiparallel b-sheet with the

N-terminal b-strand as the native structure, due to the

lack of contact restraints between them.

The detailed information of the accurately predicted

distance profiles in the above examples is provided in Ta-

ble SI of the Supporting Information. Each predicted dis-

tance that corresponds to the maximum number in the

distance profile has an error of <1 Å to the real distance

in the native structure. It has the trend that when the

sequence separation becomes bigger, the maximum num-

ber in the distance profile becomes smaller.

Torsion angle prediction derived from
fragments

Using the clustering algorithms, we have collected up

to 30 pairs of torsion angles for each residue. The accu-

racy of the first and the best cluster centers from the

fragments of different lengths is shown in Figure 5. Here,

the error between the native torsion pair (u0, w0) and

the prediction (uc, wc) is calculated by the following for-

mula. d(x,y) is the absolute difference between two tor-

sion angles with their periodicity considered.

Et ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðuc ;u0Þ þ d2ðwc ;w0Þ

q

dðx; yÞ ¼
jx � yj if jx � yj < 180

360� jx � yj else

�
ð3Þ

From the curves in the figure, it is shown that the best

in top 30 torsion angle pairs is much better than that

Figure 4
Examples of successful QUARK predictions in CASP9 by incorporating distance profiles. Predicted model and native structure are represented by

thick and thin backbones separately. Accurately predicted residue pairs are connected by red lines. (a) T0553-D2, TM-score 5 0.59, and RMSD 5

4.22 Å. (b) The middle part of T0571-D2, TM-score 5 0.61 and RMSD 5 2.91 Å. (c) T0604-D1, TM-score 5 0.48, and RMSD 5 4.41 Å.
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from the first pair of angles, which demonstrates the diffi-

culty in the selection of the best fragments. However,

using the complete set of alignment features in Eq. (2) still

can considerably improve the accuracy of phi/psi predic-

tions compared to that only using profile comparison.

For all four curves in the figure, we can see that the

errors are high when the fragment length is too short

(<5). This is understandable, because the scoring func-

tion based on too few residues does not contain suffi-

cient co-operative information to pick up appropriate

fragment structures. The error starts to increase when the

length is larger than 13. This means that when the frag-

ments become longer, there are fewer good fragments in

template library that can match well with the target

sequence. Overall, fragments with lengths around 10 have

the best torsion angle pair prediction.

Finally, we collect at most 30 torsion angle pairs from

fragments of length 10 by sorting their cluster sizes.

Although the phi and psi angles from the first cluster are

slightly worse than that of the machine-learning-based

method (see Table I), the best torsion angles from this

limited number of pairs are very close to the native values.

In contrast, the best of the 30 randomly generated torsion

angle pairs has an error around 16.438 for (phi, psi) pair,

which is much worse than those by the clustering method.

SS prediction from fragments

In the fragment file, for each position of the query

sequence, we record the secondary structure (SS) types of

the corresponding residues in the original templates.

Accordingly, we can assign the SS type of each residue

based on the consensus among the fragment templates.

On the test set of 145 proteins, PSSpred has the Q3 accu-

racy of 0.808 for the three-state SS prediction, which is

slightly better than 0.800 by PSIPRED49 prediction. If we

only use the sequence profile match in Eq. (2) to gener-

ate the fragments, we can get the best prediction accuracy

up to 0.752 from the single-size fragments, as shown in

Figure 6. Again, because the profile information of short

fragments is too arbitrary, the accuracy of SS prediction

is low especially when the fragment size is below five.

By combining all six energy terms in the Eq. (2), we

can achieve the best accuracy of 0.811 when the length is

around 10, which is slightly better than that of PSSpred.

Because the whole set of scoring function already

includes the PSSpred prediction result, the accuracy of SS

prediction is very stable no matter what the fragment

length is. The NN-based SS prediction programs some-

time predict mistakenly a-helix residues as b-strand or

b-strand residues as a-helix. This type of errors is more

serious than the errors caused by predicting helix/strand

as coil or coil as helix/strand, because the conversion of

helix and strand elements can misfold protein models

into completely different topologies. A combination of

the fragment-based and NN-based methods can consider-

ably reduce the possibility of helix-strand mispredictions

due to the complementary information provided by the

fragment-based prediction. As a test, we simply combine

the three-state probabilities of the two methods, which

increases the Q3 accuracy to 0.815 for those hard targets.

The percentage of residues with helix-strand misconver-

sion reduces from 3.0% in PSSpred to 2.3%.

Optimal number of fragments at each
position

If some region of the query sequence has homologous

alignments in the template library, the current scoring

Figure 5
Error of clustered torsion angle pairs using fragments of different

lengths retrieved by 1 feature and 6 features. Note that the circular
nature of the torsion angles has been considered in the calculation.

Figure 6
Comparison of secondary structure prediction in terms of fragment

lengths.
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function can usually rank them at the top of the frag-

ments. In this case, only a few fragments are sufficient to

achieve the best accuracy of distance profile prediction

and torsion angle prediction. However, for the hard pro-

teins lack of homologous fragments in the library, which

are exactly the targets of ab initio modeling, the ranking

of the selected fragments becomes much worse. In this

situation, more fragments are needed for achieving opti-

mal structure predictions.

In Figure 7, we show the accuracy of the fragment-

based contact predictions versus the number of fragments

used to collect the predictions. Here, we use fragments of

a unified length of 10 residues, because it has achieved

the best accuracy for most of the structural feature pre-

dictions. Indeed, the prediction accuracy becomes higher

with the increase of the number of fragments. But after

the number is above 100, there is no obvious difference

on the data. Similar results are observed for the SS and

torsion angle pair predictions (data not shown).

CONCLUSIONS

Assembling structural models using fragments

extracted from unrelated proteins is one of the most effi-

cient methods for template-free (or ab initio) protein-

structure prediction. As a critical step of the procedure,

this work systematically examines a series of important

issues involved in the fragment generation and selection

as well as their impact to ab initio folding simulation.

We first developed a gapless-threading method to

retrieve fragments of various sizes from a nonredundant

protein structure library. Although all multiple features

are shown to be useful to increase the accuracy of local

fragments, the most important contributions come from

the sequence profile alignment and the SS match. In con-

trast, the changes in the template library size and tem-

plate protein sets have less important impact compared

to the feature collections.

Second, we proposed a novel method to construct dis-

tance profiles from multiple fragments generated at dif-

ferent locations, which allows the derivation of long-

range contact information from short local fragment

structures. Using a peak cutoff of 8 Å in the distance his-

togram, the residue contact predictions by the fragments

have accuracy better or comparable to that by the best

machine-learning method depending on the contact

orders. In the real-case ab initio folding, distance profile

was also found advantageous over the traditional distance

restraint predictions, which are usually specified by the

average and the deviation of distances, because imple-

mentation of a continuous distance histogram rather

than a single distance average helps tolerate distance

errors.12 Distance profile can also be derived from multi-

ple-threading alignments by different threading programs.

It has shown encouraging results on modeling the

remotely homologous protein targets when the strategy

was used by QUARK in combination with the LOMETS

alignments (data in preparation).

Finally, we examined the predictions of residue–residue

contacts, torsion angles, and SS types as derived from

different sets of fragment structures. It is found that the

fragments of 10 residues in length can consistently result

in the optimal results, and at least 100 fragments at each

position are needed for the optimal modeling.
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