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Structure based virtual screening has largely been limited to protein targets for which either an experi-
mental structure is available or a strongly homologous template exists so that a high-resolution model
can be constructed. The performance of state of the art protein structure predictions in virtual screening
in systems where only weakly homologous templates are available is largely untested. Using the chal-
lenging DUD database of structural decoys, we show here that even using templates with only weak
sequence homology (<30% sequence identity) structural models can be constructed by I-TASSER which
achieve comparable enrichment rates to using the experimental bound crystal structure in the majority
of the cases studied. For 65% of the targets, the I-TASSER models, which are constructed essentially in the
apo conformations, reached 70% of the virtual screening performance of using the holo-crystal structures.
A correlation was observed between the success of I-TASSER in modeling the global fold and local struc-
tures in the binding pockets of the proteins versus the relative success in virtual screening. The virtual
screening performance can be further improved by the recognition of chemical features of the ligand
compounds. These results suggest that the combination of structure-based docking and advanced protein
structure modeling methods should be a valuable approach to the large-scale drug screening and discov-
ery studies, especially for the proteins lacking crystallographic structures.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Virtual screening is a computational approach to detect poten-
tial leads from compound libraries that has become a standard
technology in modern drug discovery pipelines [1]. The total num-
ber of potential ligands for drug development is much larger than
what can be feasibly tested. While estimates of the total number of
synthetically accessible small molecules vary, even the smallest
number indicates a drug-like chemical space that is much larger
than what can be efficiently explored experimentally through blind
screening. Given the common estimate that a single industrial lab
can only test 10,000–100,000 compounds in a day with standard
high throughput screening, the smallest estimate [2] of drug-like
chemical molecules (1.5 � 107) still presents a formidable task
for lead selection. If larger estimates of 1023–1060 possible drug-
like molecules are considered [3], the total number of potential
ligands for drug development is much larger than what can be fea-
sibly tested experimentally. The main goal of virtual screening is
therefore to identify a limited set of candidates to be synthesized
for the much more expensive next step of experimentally examin-
ing their biological activities [1].

Historically, virtual screening approaches in the drug develop-
ment process have been divided into structure- and ligand-based
algorithms [4,5]. Structure-based computational modeling
approaches such as molecular docking use the full three dimen-
sional structure of the protein target for lead optimization and
hit discovery [6]. The ligand-based approach, by contrast, ignores
the structural details of the protein target and finds ligands with
pharmacophores similar to known hits to generate a model of
the pharmacodynamics of a potential hit, or to perform quantita-
tive structure–activity relationship studies [5]. In principle, the
structure-based methods might be expected to give better results
than the ligand-based approaches, because they try to simulate
the intrinsic character of protein–ligand interactions [7]. However,
a major drawback of the structure-based technique is a structural
model of the protein, which usually needs to have high-resolution,
must be available, which is frequently not the case for many pro-
tein families of interest in drug development. If a high-resolution
structural model cannot be created, only ligand-based approaches
may be used.
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Although the amount of high-resolution protein structures has
increased dramatically in recent years, the structures of some
important protein targets implicated in the etiology of deadly dis-
eases remain unsolved [8,9]. What can be done if the 3D protein
structure of the drug target is not available? Fortunately, many
computational methods have successfully predicted accurate 3D
structures from only the amino-acid sequence of the target. Several
methods have been used for protein structure prediction including
homology modeling [10,11], threading [12,13], and ab initio folding
[14–16].

Most virtual screening studies using predicted structures have
been relied on homology modeling, which is based on the general
observation that proteins with similar sequences can be expected
to possess similar structures. Homology modeling of proteins con-
sists of identification of related proteins with a known 3D structure
that can serve as a template, followed by sequence alignment of
the target and template, and the refinement of the structural
model. Although there are specific cases where a template with
low sequence similarity may adopt similar structure folds (e.g.
27 different homologous subfamilies from 60 different enzyme
classifications, which have no sequence similarity, have the same
TIM barrel fold [17]), homologous templates generally refers to a
known protein that shares strong sequence similarity to the target.
Thus, the final quality of a homology model for virtual screening
often depends on the level of sequence identity between the target
and template. Multiple studies have attempted to assess the degree
of sequence identity needed for effective virtual screening for dif-
ferent classes of protein targets. As an approximate rule, P50%
sequence identity is believed to be sufficient for drug discovery
[18–20], although this number varies widely among the target
class and a strong correlation between sequence identity of the
template and virtual screening success has not been verified for
most targets at high sequence identity levels [21,22]. On the other
hand, the accuracy of the structural model has been shown to cor-
relate with virtual screening success [23]. The accuracy of homol-
ogy modeling significantly declines when a template above 30%
sequence identity cannot be found.

However, approaches based on advanced algorithms including
threading and ab initio folding can increase the success rate for
modeling the structure of distantly- or non-homologous protein
targets [24]. The Iterative threading assembly refinement (I-TAS-
SER) is one of such approaches that was designs to combine multi-
ple pipelines of threading, ab initio folding and atomic-level
structure refinement for full-length protein structure prediction
[25]. In the recent community-wide blind structure prediction
experiments, the Critical Assessment of Structure Prediction
(CASP), I-TASSER has shown advantages over peer modeling pro-
grams in automated 3D structure predictions [26–30].

In this work, we tested the use of the I-TASSER models in large-
scale structure-based virtual screening of the Directory of Useful
Decoys (DUD) database [31]. The 3D structures of protein targets
from the DUD database are first constructed by the I-TASSER pro-
gram from the amino acid sequence alone, where template struc-
tures with a sequence identity >30% were excluded from the
threading library. Next, atomic level refinement is performed by
fragment guided molecular dynamics, FG-MD [32], to relax the
predicted structures. The actual virtual screening is performed by
molecular docking using the GRID score of DOCK 6.3 [33,34] to
measure the binding site complementarity. While the performance
of virtual screening using I-TASSER models did not match that of
virtual screening using the experimental crystal structure, good
enrichment rates (�70%) relative to using crystal structures could
be achieved in most cases (65% of the structures tested) using
the automatic structure prediction and docking pipelines without
human intervention. The rate of success correlates well with the
accuracy of I-TASSER in predicting the global fold and local
structure of the binding pockets of the proteins. These results sug-
gest that 3D models built by the state of the art structure predic-
tion methods can provide a useful starting point of structure
based virtual screening for the many cases where neither an exper-
imental structure nor a clearly homologous template is available.
2. Materials and methods

2.1. Target set of proteins and ligands for virtual screening

We used the Directory of Useful Decoys (DUD) [31], one of the
largest freely available databases for evaluating docking based vir-
tual screening methods, to benchmark the performance of both
crystal structure and I-TASSER predicted model based virtual
screening. The DUD database consists of 40 protein targets from
the Protein Data Bank (PDB). For each protein target, there are on
average 74 active compounds (or 2950 active compounds in total),
where for each active compound there are on average 36 inactive
compounds (called decoys) with similar physical properties to
the active compound but with dissimilar chemical topology [31].
Three out of the forty proteins in the DUD target set, including HIV-
PR (1hpx), FXa (1f0r), HMGR (1hw8), are multi-chain proteins, the
models of which should be constructed by the combination of
I-TASSER with quaternary structure modeling tools [35]. Since
the focus of this study is on automatic I-TASSER-based modeling
and docking, these three proteins were removed from the test
set. Finally, a crystal structure is not available for the kinase
PDGFrb making a comparison impossible. The 36 remaining pro-
teins are listed in Table 1, along with the PDB codes of the proteins
and the number of actives and decoys for each target. In this study,
only the decoys associated with a target were docked to that target
(DUD-self), rather than all decoys for all targets.

Crystallographic structures of the bound proteins were used
without further refinement after removing water and heavy metal
atoms and adding polar hydrogens with ANTECHAMBER [36].
AM1-BCC partial charges [37,38] were added to both the crystallo-
graphic structures and I-TASSER models with ANTECHAMBER.
2.2. Creation of protein models by I-TASSER

The predicted structure models used for virtual screening were
generated by the automated I-TASSER pipeline [27]. While the
I-TASSER method has been described in previous work [17,20],
we give an outline of the pipeline below.

In the first step of the I-TASSER modeling, the target sequences
are threaded by LOMETS [39], a locally installed meta-server plat-
form consisting of 8 threading proteins (FFAS [40], HHsearch [41],
MUSTER [42], PPA [43], PRC [44], PROSPECT2 [45], SAM-T02 [46],
SP3 [47], and SPARKS [48]), through a representative PDB library
to search for possible folds or super-secondary structure segments
matching the target sequence. In this benchmark test, all templates
with a sequence identity >30% to the target are excluded to
filter out homology contaminants. This cutoff corresponds to the
‘‘twilight zone’’ where structure prediction becomes significantly
more difficult and therefore represents a challenging test where
conventional homology modeling frequently fails [49].

Following the template detections, continuous fragments are
excised from the LOMETS alignments, which are used to reassem-
ble the full-length structure models. The threading unaligned
regions (mainly loops and tails) are built by ab initio folding based
on an on-lattice system. The structural assembly procedure is
implemented by the replica-exchange Monte Carlo simulation
[50], with an optimized knowledge-based force field. The models
with the lowest free-energy are identified by SPICKER that clusters
all structure decoys in the MC simulations [51].



Table 1
A set of proteins from the DUD dataset used for virtual screening test.

Target PDB ID Protein name Class # Decoys # Actives

ACE 1o86 Angiotensin-converting enzyme Metalloenzyme 1787 49
ACHE 1eve Acetylcholine esterase Other enzyme 3867 106
ADA 1ndw Adenosine deaminase Metalloenzyme 904 37
ALR2 1ah3 Aldose reductase Other enzyme 985 26
AMPC 1xgj Ampc beta lactamase Other enzyme 781 21
AR 2ao6 Androgen receptor NH Receptor 2792 74
CDK2 1ckp Cyclin dependent kinase 2 Kinase 2015 58
COMT 1h1d Catechol O-methyltransferase Metalloenzyme 459 11
COX1 1q4g Cyclooxygenase 1 Other enzyme 908 24
COX2 1cx2 Cyclooxygenase 2 Other enzyme 13,158 412
DHFR 3dfr Dihydrofolate reductase Folate enzyme 8147 408
EGFR 1m17 Epidermal growth factor receptor kinase Kinase 15,750 458
ER agonist 1l2i Estrogen receptor agonist NH Receptor 2517 67
ER antagonist 3ert Estrogen receptor antagonist NH Receptor 1434 39
FGFR1 1agw Fibroblast growth factor receptor kinase Kinase 4490 120
GART 1c2t Glycinamide ribonucleotide transformylase Folate enzyme 863 31
GPB 1a8i Glycogen phosphorylase beta Other enzyme 2115 52
GR 1m2z Glutocorticoid receptor NH Receptor 2922 78
HIVRT 1rt1 HIV reverse transcriptase Other enzyme 1495 42
HSP90 1uy6 Human heat shock protein 90 kinase Kinase 965 25
INHA 1p44 Enoyl ACP reductase Other enzyme 3232 86
MR 2aa2 Mineral corticoid receptor NH Receptor 630 15
NA 1a4g Neuraminidase Other enzyme 1866 49
P38 1kv2 P38 mitogen activated protein kinase Kinase 9041 353
PARP 1efy Poly(ADP-ribose) polymerase Other enzyme 1331 35
PDE5 1xp0 Phosphodiesterase V Metalloenzyme 1972 76
PNP 1b8o Purine nucleoside phosphorylase Other enzyme 1017 30
PPAR-c 1fm9 Peroxisome proliferator activated receptor gamma NH Receptor 3071 82
PR 1sr7 Progesterone receptor NH Receptor 1019 27
RXRa 1mvc Retinoic X receptor alpha NH Receptor 744 20
SAHH 1a7a S-adenosyl-homocysteine hydrolase Other enzyme 1312 33
SRC 2src Tyrosine kinase SRC Kinase 6217 159
Thrombin 1ype Thrombin Protease 2425 68
TK 1kim Thymidine kinase Kinase 876 22
Trypsin 1bju Trypsin Protease 1644 46
VEGFR2 1y6b Vascular endothelial growth factor receptor kinase Kinase 2849 78
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Because I-TASSER models were built on reduced models as
specified by the C-alpha and side-chain center of mass and the
SPICKER clustering procedure generates models by coordinate
averaging which often result in atom overlaps, we conduct a frag-
ment-guided molecule dynamic simulation, FG-MD [32], to add
full-atom coordinates and to remove the local overlaps. In FG-
MD, simulated annealing molecular dynamics simulations were
implemented using a modified LAMMPS algorithm [52], where
the force field consists of four energy terms from the distance
map restraints from I-TASSER, explicit hydrogen binding, a repul-
sive potential, and the AMBER99 force field [53]. To further
improve the topology of the reduced I-TASSER models, substruc-
tures consisting of three consecutive secondary structure elements
are excised from the I-TASSER models and used as probe to search
through a non-redundant PDB library by TM-align [54] to detect
the analogous structure fragments that are closest to the substruc-
tures. Spatial constraints were collected from these analogous frag-
ments and used as an additional term to guide the FG-MD
simulations. The final refined models from the FG-MD simulations
were selected based on the sum of the Z-score of hydrogen bonds,
the Z-score of the number of steric clashes, and the Z-score of FG-
MD energy. This procedure was fully automated (http://zhang-
lab.ccmb.med.umich.edu/FG-MD/) with a running time for each
refinement target of less than 2 h for a 2.4 GHz CPU.

As a control, a similar process of the FG-MD refinement simula-
tion was also implemented on the experimental crystal structures
to create a separate set of protein models for comparison, termed
the relaxed crystal set. Because the X-ray structure often exists
as a global fold with idealized local structure (e.g. free of overlaps),
the application of the FG-MD procedure to the crystal structures
only results in a negligible change to backbone structure (<0.3 Å
RMSD). But the side-chain packing is re-calculated, which may
occupy the void formerly occupied by the ligand since the ligand
is not included in the FG-MD relaxation.
2.3. Molecular docking

Virtual screening on the I-TASSER models and the experimental
X-ray structures was performed by molecular docking using the
DOCK 6.3 program, selected for its known accuracy and speed
[33]. DOCK first generates a negative image of the receptor by mak-
ing use of spheres that fill the binding pocket. The algorithm then
attempts to superimpose the ligand atoms onto the centers of the
spheres. For bound crystal structures, a receptor box centered on
the bound ligand with an additional 5 Å boundary was used to
define the active site for docking. For the I-TASSER predicted mod-
els a similar box was made by a superposition of the crystallo-
graphic structures onto the I-TASSER models. The DMS program
distributed with DOCK 6.3 was used to generate the molecular sur-
face for each receptor while the SPHGEN utility was then used to
create the negative image of the surface with the sphere set for
each complex composed of all spheres found within 10 Å of any
ligand atoms. Scoring function potential grids for the receptor were
pre-calculated prior to docking by the GRID utility to increase com-
putational efficiency. Finally, the incremental anchor-and-grow
strategy was used to incorporate ligand flexibility in the docking
process [55]. Virtual screening with docking was carried out on a
Linux Cluster Platform which contains 2200 CPUs (Inter(R) Xeon(R)
2.27 GHz) on 266 computing nodes.

http://zhanglab.ccmb.med.umich.edu/FG-MD/
http://zhanglab.ccmb.med.umich.edu/FG-MD/
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2.4. Virtual screening and enrichment rate

For each target, compounds were sorted and ranked based on
the docking pose with the lowest GRID energy. It is important to
have an objective criteria for evaluating the quality of the protocol
and the performance of an in silico virtual screening method. The
enrichment rate is a practical statistic geared towards one of the
main goals of virtual screening, identification of rare potential lead
compounds amongst a large set of similar but inactive compounds
(decoys) [31]. The enrichment rate (ER) is defined as:

ERx% ¼
Hitsx%

sampled � Ntotal

Nx%
sampled � Hitstotal

ð1Þ

where Hitsx%
sampled is the number of hits found at x% of the database

screened, Nx%
sampled is the number of compounds screened at x% of

the database, Hitstotal is the number of actives in entire database,
and Ntotal is the number of compounds in entire database. It can eas-
ily be seen that enrichment rate has a fixed maximum at any given
percentage of the database screened. At 1%, the maximum is 100, at
2% the maximum is 50, and at 10% screened the maximum enrich-
ment rate obtainable is 10. This enrichment rate reflects the capa-
bility of a screening application to detect active ligands (true
positives) compared to random selection.
3. Results and discussion

3.1. Virtual screening and enrichment evaluation based on
crystallographic structures of proteins

In the docking approach, the test molecules were docked with
the target proteins and sorted according to their docking scores.
The enrichment curve plot of the percentage of actives found for
Fig. 1. The enrichment curves using the experimental X-ray crystal protein structures in
performance of random selection (black).
different levels of hypothetical database screening is shown in
Fig. 1 with the enrichment curve docking against the crystallo-
graphic bound structure colored in blue and the enrichment curve
for random screening colored in green. Random screening gives an
enrichment value near 1, which is expected by consideration of the
form of the enrichment factor.

It can be seen from Fig. 1 that docking against the crystal struc-
ture is a successful strategy for some proteins targets but not oth-
ers, in agreement with other studies using docking-based virtual
screening [56]. To eliminate intractable targets, a threshold of 10
times the enrichment over random selection was selected as a cut-
off for successful docking. This cutoff is roughly 2.5 times the
enrichment rate usually obtained for ligand based virtual screening
and 5 times that for virtual screening based on simple molecular
descriptors like atom counting. This threshold was met for 20
out of the 36 proteins tested. Docking was judged to be unsuccess-
ful for the remaining 16 out of the 36 proteins tested and these tar-
gets were eliminated for further consideration, as it is less likely
(but not impossible) [21] that a predicted model will succeed in
virtual screening where a high resolution experimental structure
has failed.
3.2. Quality of I-TASSER based structure prediction on the DUD protein
targets

The sequences of the remaining 20 protein targets were used to
generate the 3D theoretical models by the I-TASSER program, to
test how close the predicted models could reproduce the perfor-
mance of experimental structures in docking-based virtual screen-
ing. In addition to RMSD, the similarly of the I-TASSER models with
the target structure is assessed by TM-score [57], which is in the
range of [0,1] with a higher score indicating a better structural
match. In general, a TM-score <0.17 is equivalent to a randomly
the virtual screening (blue) compared to random selection (green) and 10 times the
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selected protein pair with gapless alignment taken from PDB while
a TM-score >0.5 corresponds to protein pairs with similar folds
[58]. Compared to the widely used RMSD measure, TM-score has
been demonstrated to be more sensitive to the global fold by
weighting residue pairs between structures at short distances at
a higher weight, while RMSD is more sensitive to the local struc-
ture fluctuations.

Fig. 2 represents a summary of the first models generated by I-
TASSER. In this plot, the lines and balls represent the TM-score
(red) or RMSD (blue) of predicted model to the native structure,
respectively, for each protein. Even with the limitations on struc-
tural templates imposed by the 30% sequence identity cutoff, only
one target in the DUD database, Neuraminidase (na), a large 461-
residue protein with a complex topology with many flexible loops,
fails to meet the 0.5 TM-score cutoff indicative of a similar global fold
as the native structure. The predicted models of the remaining pro-
teins have similar global folds to the native with most proteins hav-
ing TM-scores in the 0.7–0.9 range and RMSD values of 4 Å or less.

As a control, we tried to generate models using MODELLER [59],
a standard tool for homology modeling, using the same threading
templates. The TM-scores of the MODELLER models are lower than
the I-TASSER models for all the targets, with the average RMSD of
2.4 Å higher than that of the I-TASSER models. Nevertheless, 13 out
of the 20 targets have the correct fold by MODELLER with a TM-
score >0.5, mainly due to the correct identification of the template
structures by LOMETS.

3.3. Comparison of virtual screening performance using I-TASSER
models versus crystallographic structures

The enrichment curve using predicted I-TASSER models is pre-
sented in Fig. 3 in comparison with the performance using the
crystallographic structures in docking-based virtual screening. In
order to compare the performance of virtual screening based on
experimental crystallographic structures and I-TASSER predicted
models quantitatively, we checked the number of actives that were
ranked in the top 1%, 5%, 10% of the compounds chosen, and calcu-
lated the corresponding enrichment rates (Table 2). The percentage
of the I-TASSER models that reach or exceed the virtual screening
Fig. 2. Summary of I-TASSER structure predictions on the 20 DUD
performance of either the crystallographic structures or the crystal
structures relaxed in the unbound form by FG-MD using these
screening thresholds is shown in Table 3.

A few trends are apparent from the data. The first is the accept-
able virtual screening performance of the I-TASSER models when
compared with virtual screening using either the bound or relaxed
crystallographic structures. For only three proteins (ampc, mr and
rxr) does the virtual screening with I-TASSER models fail com-
pletely and give enrichment rates near random performance (col-
ored in green in Fig. 3). Two of these proteins (mr, rxr) are in the
difficult nuclear hormone receptor class (Table 1) for which dock-
ing using the experimental crystal structure failed for 6 out of the 8
targets in this class (Fig. 1). For the remaining proteins (ace, cdk2,
comt, egfr, fgfr1, hivrt, inha, p38, pde5, pnp, thrombin, vegfr2), the
I-TASSER models perform relatively well in virtual screening.

More quantitatively, for 13 targets (65% of the total) the I-TAS-
SER models were able to reach 70% or better of the enrichment
value using the experimental bound crystal structure. 75% of the
I-TASSER models can achieve half of the performance of virtual
screening using the experimental crystal structures when the top
1% of the database is ranked. Interestingly, I-TASSER compares
slightly more favorably when compared to the structures relaxed
in the unbound form by FG-MD, in agreement with the improve-
ment in docking for most protein targets when using experimental
holo-structures [60]. The I-TASSER models of five proteins (fgfr1,
inha, pnp, comt, vegfr2) are actually significantly better in virtual
screening than the bound crystallographic structures in virtual
screening, although, except for comt, they perform similarly to
the relaxed experimental crystal structures. This finding suggests
the improvement of the I-TASSER models over the bound crystal
structures in these cases is a result of the rigid conformation of
the protein used in docking during screening, which prevents reor-
ganization of the binding site during docking to accommodate an
active ligand with a different conformation than the bound confor-
mation [60]. The relaxed crystal structures and I-TASSER models in
these cases have more open binding sites and can therefore accom-
modate a greater diversity of ligands.

As a control, we used the MODELLER models in the same struc-
ture-based docking screening. There are only 7 cases (35% of the
proteins in comparison to the experimental crystal structures.



Fig. 3. Enrichment curves in virtual screening using the experimental bound crystal structure (blue), experimental crystal structure relaxed in the unbound form by FG-MD
(black), and the I-TASSER model (red) compared to random selection (green).

Table 2
Enrichment rate (ER) values for the top 1%, 5% and 10% compounds (ER1%, ER5% and ER10%) on 20 DUD targets using different receptor models with or without Tanimoto filters (‘‘–’’
refers to the cases which failed to achieve enrichment over random screening).

Targets Original DUD dataset without filter TC2 dataset with TanimotoCombo filter

Crystal (bound) Crystal (relaxed) I-TASSER model Crystal (bound) I-TASSER model

ER1% ER5% ER10% ER1% ER5% ER10% ER1% ER5% ER10% ER1% ER5% ER10% ER1% ER5% ER10%

ace 25.00 39.58 39.58 20.41 28.57 36.73 18.37 30.61 34.69 45.83 66.67 66.67 33.33 50.00 58.33
ada 15.38 25.64 38.46 12.82 28.21 38.46 5.13 17.95 41.03 15.38 25.64 38.46 5.13 17.95 41.03
ampc 14.29 28.57 33.33 19.05 28.57 38.10 – – – 15.00 30.00 35.00 – – –
cdk2 19.72 30.99 33.80 12.50 18.06 19.44 14.08 25.35 28.17 19.72 30.99 33.80 14.08 25.35 28.17
comt 11.11 11.11 11.11 – 12.50 12.50 27.27 27.27 27.27 – – – 100.00 100.00 100.00
egfr 19.36 30.85 35.74 23.26 33.40 38.48 21.43 25.76 28.57 17.19 28.73 33.94 20.00 24.09 27.05
fgfr1 11.40 20.18 22.81 21.93 35.09 40.35 16.07 28.57 32.14 12.87 21.78 24.75 17.17 27.27 31.31
hivrt 11.63 20.93 30.23 4.65 13.95 18.60 11.63 18.60 20.93 12.82 20.51 28.21 12.82 15.38 17.95
inha 16.87 30.12 32.53 16.67 25.00 28.57 18.60 31.40 34.88 15.38 28.21 32.05 18.52 29.63 33.33
mr 13.33 33.33 46.67 6.67 6.67 13.33 6.67 6.67 6.67 15.38 38.46 46.15 – – –
na 26.53 55.10 67.35 2.04 10.20 12.24 14.29 26.53 40.82 25.00 54.17 66.67 14.58 27.08 39.58
p38 11.92 18.98 22.30 12.99 21.11 27.84 8.89 16.89 22.00 15.79 18.95 22.63 11.83 16.67 20.97
parp 17.14 20.00 31.43 14.71 17.65 20.59 2.86 2.86 2.86 17.14 20.00 31.43 2.86 2.86 2.86
pde5 18.18 31.82 34.09 14.77 26.14 28.41 15.48 26.19 29.76 9.09 11.36 13.64 6.67 8.89 11.11
pnp 14.00 16.00 26.00 – – 4.00 16.00 22.00 26.00 14.00 16.00 26.00 16.00 22.00 26.00
rxr-a 20.00 50.00 50.00 30.00 45.00 45.00 – – – 20.00 50.00 50.00 – – –
src 21.66 28.03 31.21 18.54 27.81 28.48 15.23 27.81 31.13 – – 8.33 7.32 14.63 17.07
thrombin 16.90 46.48 57.75 10.14 26.09 31.88 15.28 44.44 54.17 9.52 23.81 38.10 10.00 25.00 25.00
trypsin 13.64 31.82 38.64 7.14 19.05 33.33 4.26 12.77 21.28 7.14 28.57 28.57 – – –
vegfr2 14.12 15.29 15.29 21.18 34.12 38.82 21.59 25.00 30.68 4.65 6.98 6.98 12.50 12.50 22.50

Average 15.68 26.65 32.37 14.97 24.06 27.76 14.06 23.15 28.50 16.22 28.94 33.23 18.93 26.21 31.39
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total) that were able to reach 70% or better of the enrichment value
by the experimental bound crystal structure. The average enrich-
ment values by the MODELER models are 35%, 26% and 28% lower
than that using the I-TASSER models at the top 1%, 5% and 10% of
compounds selected, respectively. These data demonstrate an
impact of the structure prediction methods on the performance
of the structure-based visual screening.
3.4. Correlation between enrichment rate and quality of protein
models

The above I-TASSER data in comparison with the control models
by MODELLER has indicated the dependence of the performance of
virtual screening on the accuracy of the target protein structures.
To have a more quantitative examination on the problem, we



Table 3
Performance of docking screening based on the I-TASSER models relative to that on the X-ray bound structures or X-ray structures relaxed by FG-MD.

% Relative cutoff of successa (%) I-TASSER model vs. bound structureb I-TASSER model vs. relaxed structurec

ER1% (%) ER5% (%) ER10% (%) ER1% (%) ER5% (%) ER10% (%)

50 75 70 80 80 85 85
60 65 70 75 75 85 80
70 65 70 65 70 75 75
80 45 60 60 65 65 55
90 40 35 45 60 55 55

100 30 25 25 45 45 50

a Threshold for success defined as the fraction of the enrichment rate using the I-TASSER model to that using the X-ray bound structure or the relaxed X-ray structure.
b The percentage of ER that reach the threshold using the I-TASSER models compared to that using the X-ray bound structure.
c The percentage of ER that reach the threshold using the I-TASSER models compared to that using the X-ray structure relaxed by FG-MD.

Fig. 4. Correlation between ER10% and TM-score of the receptor models when
I-TASSER models successfully predicted the native structure (TM-score P0.7) and
the virtual screening was successful, i.e. with 60% of the ER10% from the bound
crystal structure. The outlier thrombin was removed from the correlation analysis.

Fig. 5. Ligand docking on the neuraminidase protein. (A) Superposition of the crystallog
binding pocket residues highlighted in red spheres. (B) The initial docking box (black) g
Overlay of the ligand structure from the native (purple) and that by docking using bound
native (purple) and that by docking using I-TASSER model of the protein (green).
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present in Fig. 4 the correlation of enrichment rate and the quality
of the target models, with focus on the proteins for which I-TASSER
models faithfully reproduced the fold of the protein (TM score
>0.7) and were successful replacements for the crystal structures
in virtual screening (60% of the ER10% of the bound crystal struc-
ture). 14 out of the 20 targets met this criterion. If the outlier
thrombin target is excluded, there is a Pearson correlation between
the ERs and the TM-score with R value 0.728 and p-value (0.01),
suggesting a relationship does exist between the fidelity of the
receptor models to the native and the success in virtual screening.

Nevertheless, there are cases where the performance of virtual
screening demonstrates somewhat contradictive correlation to
the global quality of the I-TASSER models. For instance, neuramin-
idase (NA) is the only target where I-TASSER failed to generate a
correct fold (with a TM-score <0.5) as shown in Fig. 2. However,
the enrichment rate at 10% compound is 40.82 using the I-TASSER
model, which is 61% of that using the bound crystal structure. A
detailed examination on this case found that the local binding
pocket of the I-TASSER model is very close to the bound crystal
structure although the global fold of the other regions has a very
low resolution (Fig. 5). In this example, since the docking box (col-
ored in black) has been correctly identified, the incorrectness of the
structure outside the binding pocket does not have a strong impact
raphic structures (green) and I-TASSER model (blue) of the target protein with the
enerated by DOCK 6.3 is overlaid on the protein structure before self-docking. (C)
crystal structure of the protein (green). (D) Overlay of the ligand structure from the
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on the final performance of the virtual screening. This data partly
highlights the sensitivity of the docking screening on the local
quality of protein structure predictions.

3.5. Impact of physicochemical similarity filter of decoy compounds

In addition to the quality of the protein structure predictions,
the selection of appropriate compounds can also result in an
impact on the performance of the virtual screening. To examine
the possibility, we used the ROCs 2.2 software from OpenEye
(http://www.eyesopen.com) to filter the actives of each protein
before docking screening. ROCs is a fast shape comparison applica-
tion software, which ranks molecules on the basis of their similar-
ity to a known active molecule (reference ligand) in 3D shape
space, using atom-centered Gaussian functions to allow rapid max-
imization of molecular overlap (volume and atomic). Here we used
all the actives of each DUD target to match with the crystal refer-
ence ligands on the target, with the actives ranked by the Tanimot-
oCombo score. All the active compounds, which have the
TanimotoCombo lower than 0.6, were discarded. The final screen-
ing results after the Tanimoto filter are summarized in Table 2 as
the ‘TC2 data’.

As a result, the enrichment rates are increased by the Tanimoto
filter for all cutoffs (ER1%, ER5%, ER10%) using both crystal and pre-
dicted structures. The largest improvement is from the screening
experiment using the I-TASSER models, where the ER1% was
increased by 35%, compared to that using the original DUD com-
pound sets. These data demonstrate the potential to improve the
performance by considering physicochemical features of the ligand
compounds during virtual screening.

4. Conclusion

Considering the accelerated pace of genome sequencing and the
much slower rate of experimental protein structure determination,
it is unlikely that three-dimensional structures will be soon avail-
able for all the potential drug targets. Therefore, modern drug
development at the proteome level must rely on modeled struc-
tures provided by protein structure prediction techniques. The
results of this study showed that docking-based virtual screening
with computational protein models, built by the start of the art
modeling methods, emerges as a useful compound prioritization
technique applicable to the early stages of proteome-scale drug
screening projects, even when no closely homologous templates
exist. The computational models produced by the I-TASSER pro-
gram demonstrated a similar enrichment rate in the identification
of active compounds from a set of decoys as the crystal structures
for the majority of protein targets in the test. Nevertheless, the per-
formance of the virtual screening can be further enhanced by the
improvement of the receptor structure modeling quality and
appropriate pre-selection of ligand compound using the physico-
chemical feature filtering. Thus, these data demonstrated that the
combination of structure-based docking and advanced protein
structure modeling methods represents a valuable approach to
the forthcoming large-scale drug screening and discovery studies,
especially for the proteins lacking crystallographic structures.
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