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Text S1: Control methods 

Following the definitions used in the CAFA experiments, we implemented three 
baseline methods, “Naive”, “BLAST”, and “PSI-BLAST”, to compare with the 
MetaGO pipelines. In “Naïve”, regardless of the query, GO term q is predicted with a 
confidence score that equals the relative frequency of this term in the UniProt database 
over all annotated proteins. In “BLAST”, a query is searched against all UniProt 
proteins annotated with known GO terms using BLAST with E-value cutoff 0.01, while 
in “PSI-BLAST”, a query is first searched against the UniRef90 database using PSI-
BLAST with three iterations and an E-value cutoff 0.01 to generate an initial sequence 
profile, which is again used to search against the annotated UniProt library in one 
iteration. For both “BLAST” and “PSI-BLAST”, the default confidence score for GO 
term q is the highest local sequence identity to any (PSI-)BLAST hit annotated with q 
at the aligned region.  

In addition to the standard baseline methods, we include two separate GO term 
prediction methods, GoFDR and GOtcha, in our control method set. GoFDR is designed 
to generate GO predictions from the functionally discriminating residues (FDRs) in 
multiple sequence alignments (Gong et al, Methods, 93:3, 2016); whereas GOtcha 
combines and recalibrates function prediction from sequence homologs detected across 
different species (Martin et al, BMC Bioinformatics, 5, 2004). GoFDR was ranked as 
the top predictor in the 2nd Critical Assessment of Function Annotation (CAFA2) 
experiment (Jiang et al, Genome Biology, 17:184, 2016) and is the only CAFA2 
algorithm that provides a standalone program. To our knowledge, GoFDR and GOtcha 
are the only two commonly used and publicly available GO prediction methods that 
can be downloaded and run locally on our computers. This allows us to compare them 
with MetaGO on benchmark proteins with databases modified to restrict the sequence 
identity between query protein and available functional templates. 

 
 
  



	

	

 

 
Figure S1. Distribution of sequence identity (number of identical residues divided by 
query length) between 1,400 randomly sampled UniProt sequences and their closest 
function homologs with known GO annotations. These UniProt proteins are sampled 
with two criteria: sequence length is between 30 and 700 amino acids, and pairwise 
sequence identities between different sampled sequences are < 40%. The red and green 
vertical lines indicate that 41% and 87% of sampled proteins share less than 30% and 
50% sequence identity to their closest function homolog, respectively. 
 



	

	

 
Figure S2. Color version of Figure 2 from the main text, showing Fmax score of the 
GO predictions by MetaGO, compared to that by the three component pipelines 
(structure, sequence, and PPI-homolog), and five control methods (GoFDR, GOtcha 
BLAST, PSI-BLAST, and Naïve) at different sequence identity cut-offs for filtering 
function templates. The dotted horizontal lines label the performance of MetaGO. 



	

	

 
Figure S3. Color version of Figure 3 from the main text, showing precision-recall 
curves of GO predictions by MetaGO, compared to that by the three component 
pipelines (structure, PPIhomo, and sequence), and five control methods (GoFDR, 
GOtcha, BLAST, PSI-BLAST, and Naïve) at a 30% sequence identity cut-off for 
functional templates. 
  



	

	

 
 

Figure S4. The Fmax score of the GO prediction by PSI-BLAST and BLAST using 
four different scoring functions (localID, globalID, evalue, and frequency) for selecting 
the functional templates. “sequence” indicates the sequence-based pipeline developed 
in MetaGO, which combines the prediction results from PSI-BLAST and BLAST hits. 



	

	

 
Figure S5. Performance of MetaGO on different size of proteins. From the CAFA3 
targets, five proteins are selected for each of the following ten protein lengths: 100, 200, 
300, 400, 500, 700, 900, 1100, 1300, and 1500 residues. All the 50 selected proteins 
have experimental GO annotations, and share less than 30% sequence identity to each 
other and to the MetaGO training set of 1,224 E. coli proteins. The upper panel displays 
the distribution of MetaGO running time for the five proteins with a given sequence 
length, where the total running time nearly linearly increases with the protein length 
(with a Pearson Correlation Coefficient 0.96). It should be noted that within the 
MetaGO webserver, the three component methods (sequence, structure, PPI-homolog) 
are run in parallel, and the sequence and PPI-homolog methods are much faster than 
the structure-based method. Therefore, the total running time of the webserver depends 
almost exclusively on the speed of structure-based method. The lower panel lists the 
average Fmax score versus the protein length. While there is strong correlation between 
speed and protein length, the prediction accuracy (Fmax) of MetaGO for any of the 
three GO aspects does not have a clear dependency on protein length. 



	

	

Table S1. Fmax score of the GO prediction on our test set by MetaGO, its three 
component methods (structure, sequence, and PPI-homolog), and five control programs 
at different sequence identity cutoffs. As the prediction from “Naïve” is independent of 
input sequence, only one Fmax value is shown for each GO aspect, which does not 
correspond to any specific sequence identity cutoffs. 
 

Method GO 
Aspect 

Sequence identity cutoffs 
0.2 0.3 0.5 

MetaGO 
MF 0.454 0.487 0.518 
BP 0.391 0.408 0.428 
CC 0.589 0.598 0.605 

structure 
MF 0.308 0.309 0.308 
BP 0.254 0.254 0.253 
CC 0.438 0.438 0.438 

sequence 
MF 0.357 0.450 0.521 
BP 0.273 0.344 0.396 
CC 0.420 0.499 0.556 

PPI-
homolog 

MF 0.335 0.337 0.338 
BP 0.385 0.386 0.386 
CC 0.561 0.561 0.561 

GoFDR 
MF 0.303 0.399 0.475 
BP 0.244 0.323 0.385 
CC 0.382 0.478 0.541 

GOtcha 
MF 0.278 0.316 0.340 
BP 0.250 0.267 0.273 
CC 0.416 0.433 0.449 

PSIBLAST 
MF 0.236 0.292 0.414 
BP 0.167 0.202 0.285 
CC 0.290 0.336 0.434 

BLAST 
MF 0.003 0.272 0.386 
BP 0.005 0.181 0.235 
CC 0.005 0.304 0.400 

Naïve 
MF 0.179 
BP 0.267 
CC 0.481 

  



	

	

Table S2. Weight parameters for different pipelines in Eq. (9) decided by logistic 
regression, based on a set of 1,224 training proteins taken from the E. coli genome 
which are non-homologous to the test proteins of this study. These proteins have 
experimental GO annotations, and their length ranges from 38 to 968 residues.  
 

Weights MF BP CC 
wsequence 4.828 3.455 2.716 
wPPIhomo 11.374 8.465 19.453 
wstructure 4.878 3.921 3.395 
wNaive

* -6.305 -0.827 -13.384 
w0 -5.659 -5.317 -5.805 

 
*We note that the weight for “Naive” is negative, and therefore the over-prediction of uninformative GO 
terms that are close to the root of GO hierarchy is suppressed. It is of interest to note that this piece of 
data seems to be counter-intuitive in that the “Naïve” component, which is a strong predictor for CC, is 
given a negative weight by logistic regression in MetaGO. To understand the reason for the weight 
𝑤"#$%&'  being negative, we can re-write the logistic regression expressed by Eq. (9) into: 

𝐶𝑠𝑐𝑜𝑟𝑒.&/#01(𝑞) = 1 71 +
𝑒𝑥𝑝[−𝑥(𝑞)]
𝑒𝑥𝑝[−𝑥′(𝑞)] ∙ 𝑒𝑥𝑝

(−𝑤@)AB 																											(𝑆1) 

In this equation, the argument in the denominator, i.e., 

𝑥(𝑞) = E 𝑤F ∙ 𝐶𝑠𝑐𝑜𝑟𝑒F(𝑞)
FG{I/JKL/KJ&,I&NK&OL&,PPQRSFS}

																														(𝑆2) 

is a linear combination of the three component methods for predicting GO term q, while the argument in 
the nominator, 

𝑥′(𝑞) = 𝑤"#$%&' ∙ 𝐶𝑠𝑐𝑜𝑟𝑒"#$%&(𝑞)																																																				(𝑆3) 
is the expected value of Eq. (S2), where 𝑤"#$%&' = −𝑤"#$%& > 0  is the (positive) weight for q’s 

background probability 𝐶𝑠𝑐𝑜𝑟𝑒"#$%&(𝑞). Thus, the term &YZ[[Y(N)]
&YZ[[Y'(N)]

 quantifies the deviation of combined 

confidence for the three components from the expected value (background). 
 


