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Molecular replacement (MR) has commonly been employed to derive the phase

information in protein crystal X-ray diffraction, but its success rate decreases

rapidly when the search model is dissimilar to the target. MR-REX has been

developed to perform an MR search by replica-exchange Monte Carlo

simulations, which enables cooperative rotation and translation searches and

simultaneous clash and occupancy optimization. MR-REX was tested on a set of

1303 protein structures of different accuracies and successfully placed 699

structures at positions that have an r.m.s.d. of below 2 Å to the target position,

which is 10% higher than was obtained by Phaser. However, cases studies show

that many of the models for which Phaser failed and MR-REX succeeded can be

solved by Phaser by pruning them and using nondefault parameters. The factors

effecting success and the parts of the methodology which lead to success are

studied. The results demonstrate a new avenue for molecular replacement which

outperforms (and has results that are complementary to) the state-of-the-art

MR methods, in particular for distantly homologous proteins.

1. Introduction

Molecular replacement (MR) is a technique that is employed

to determine the phase information in X-ray diffraction by

replacing the target protein with a protein that has a known

homologous structure (Rossmann & Blow, 1962; Crowther,

1972; Drenth, 2007). Advanced MR methods can now use

predicted protein structures (Wang et al., 2016), ab initio

models (Bibby et al., 2012), small secondary-structure

elements (Rodrı́guez et al., 2009) and even single atoms

(McCoy et al., 2017). Nearly two thirds of the X-ray structures

deposited in the PDB have been solved by MR (Long et al.,

2008). Nevertheless, the failure rate of automated MR tech-

niques is high when there are no closely homologous protein

structures (typically with a sequence identity of <30%;

Schwarzenbacher et al., 2004). Even with closely homologous

proteins, the correct positioning of the search model in MR

becomes nontrivial in cases where only low-resolution data

are available (Baker et al., 1995; Giorgetti et al., 2005), the unit

cell is densely packed (Chang & Lewis, 1997; Glykos &

Kokkinidis, 2000, 2001), the protein is elongated (Chang &

Lewis, 1997) or the space group is of high symmetry (Baker et

al., 1995; Tong, 1996).

In traditional MR approaches, such as those used by Phaser

(McCoy, 2007; McCoy et al., 2007), MOLREP (Vagin &

Teplyakov, 1997, 2000, 2010), AMoRe (Navaza, 1987, 1990,

1993, 1994, 2001; Castellano et al., 1992), CNS (Grosse-

Kunstleve & Adams, 2001) and COMO (Jogl et al., 2001), the

placement of the probe model consists of two general steps.

Firstly, the model is oriented (by rotation) using a systematic
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grid-based search. Secondly, the model is positioned (by

translation) for a given orientation using another systematic

grid-based search. When there are multiple proteins in the

asymmetric unit, the proteins are typically placed one by one.

While this strategy works well for easy cases, in which the

structure of the homologous model is similar to that of the

target, it may be difficult to identify candidates for the correct

orientation of the model in harder cases without first

approximating the position of the model, because methods

that split the rotational and translational searches need to

make approximations that break down at some point

(Brünger, 1990, 1993, 1997). For example, Patterson function-

based approaches make the approximation that the intra-

molecular and intermolecular Patterson functions are separ-

able, which can fail in cases where this assumption is invalid,

such as when the unit cell is densely packed or the protein is

elongated (Evans & McCoy, 2008). Maximum-likelihood-

based methods (McCoy, 2007) can also fail in such cases

because the likelihood of a model given only the orientation

cannot be determined accurately when the model is not near

the native. As a structure moves further from the native it

becomes more difficult to choose the correct orientation for

the translational search. In hard cases, the correct orientation

of the model may not be a local minimum of the function that

is used to assess the agreement between the calculated

diffraction pattern and the experimental data (Jogl et al., 2001;

Kissinger et al., 1999; Tong, 1996). While it is possible to

perform a six-dimensional grid search such as that performed

by SOMoRe (Jamrog et al., 2003) or MPI_FSEARCH (Liu et

al., 2003), it becomes difficult to perform a 6n-dimensional

grid search for n protein components in the asymmetric unit

when n is greater than 1.

Here, we present MR-REX (Molecular Replacement by

Replica-Exchange Simulation), which uses replica-exchange

Monte Carlo (REMC) simulations (Swendsen & Wang, 1986)

to integrate the different conformational search components

into a unified process to improve the efficiency of MR. REMC

is an advanced Monte Carlo simulation method designed to

improve the speed of the canonical Metropolis Monte Carlo

simulation approach (Metropolis et al., 1953); the latter tends

to become trapped in local energy minima when the energy

landscape of the system is rugged. In REMC, multiple replicas

of simulations are performed in parallel and at different

temperatures; the high-temperature replicas may help the low-

temperature replicas to jump across the energy barriers by

periodically swapping the temperatures of different replicas

following the Metropolis criterion. The MR-REX protocol

enables the consideration of a clash score during the MR
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Figure 1
Flowchart for MR-REX. The pipeline consists of three consecutive replica-exchange Monte Carlo simulations designed for diffraction data match, clash
removal and occupancy optimization, respectively. The inset at the upper left highlights the common Monte Carlo process, with movements containing
rotation, translation and occupancy changes, followed by diffraction calculation, B-factor correction and Metropolis movement acceptance.



search to increase the success rate. Since inaccuracies in the

protein model are more detrimental to the success of MR than

deletions (Sammito et al., 2014; Bibby et al., 2012; Wang et al.,

2016, 2017; Shrestha & Zhang, 2015), MR-REX takes advan-

tage of this fact by predicting possible inaccurate segments of

the structural model and optimizing the occupancies of these

segments during MR. A similar approach of pruning inaccu-

rate atoms has also been applied by other programs, including

CHAINSAW (Stein, 2008) and phenix.sculptor (Bunkóczi &

Read, 2011), to improve the efficiency of MR. The MR-REX

method is carefully examined using large-scale benchmark

data sets with structure models with different distances from

the native. It has been demonstrated that the method is able to

find correct MR solutions for some difficult cases where the

other state-of-the-art phasing method could not. The source

code and online server for MR-REX have been made freely

available at https://zhanglab.ccmb.med.umich.edu/MR-REX/.

2. Methods

MR-REX generates molecular-replacement models through

three steps of consecutive REMC simulations for optimized

diffraction data match, steric clash removal and the follow-up

occupancy optimization, respectively. A flowchart of the

pipeline is depicted in Fig. 1, with the detailed procedure

described below. The algorithm is benchmarked mainly with

Phaser (McCoy et al., 2007), one of the most accurate

programs in molecular replacement; PHENIX 1.11 was used

to run Phaser and phenix.autobuild with default settings.

2.1. Input and output data

The input to MR-REX is a set consisting of structure-factor

data, a structure file in PDB format and a parameter file. The

parameter file needs to contain the space group, unit-cell

information and the number of models in the asymmetric unit.

There are a number of other options in the parameter file,

which are described in Supplementary Table S1. Most of these

options have reasonable defaults, which do not have to be

modified by the user. The output contains a set of candidate

MR solutions and a log file specifying the scores of the

candidate MR solutions.

2.2. Scoring function and weight optimization

The scoring function that guides the MR-REX search is a

linear combination of four terms that quantify how well the

calculated (Fcalc) and experimental (Fobs) diffraction data

match and three terms that evaluate the intermolecular

clashes:

XScore ¼ ðRZ þ w1DZ þ w2PZ þ w3MLZÞ

þ ðw4ESS
Z þ w5ECS

Z þ w6ECC
Z Þ: ð1Þ

For each term XZ the subscript Z denotes the renormal-

ization of the raw score X by its standard deviation, i.e.

XZ ¼
ðX � XÞ

ðX � XÞ
2

h i1=2
;

which helps to combine the energy terms of different scales.

The R factor is defined as

R ¼

P
hkl

��sjFcalcðhklÞj � jFobsðhklÞj
��

P
hkl

FobsðhklÞ
; ð2Þ

where s ¼
P

hkl jFobsðhklÞj=
P

hkl jFcalcðhklÞj. The standard

deviation of the calculated and observed diffraction data is

defined as

D ¼
P
hkl

½cjFcalcðhklÞj2 � jFobsðhklÞj2�2; ð3Þ

where c is a scale factor to balance the two terms. P is defined

to maximize the Pearson correlation coefficient between Fcalc

and Fobs:

P ¼

1�

P
hkl

½jFobsðhklÞj � jFobsj�½jFcalcðhklÞj � jFcalcj�

P
hkl

½jFobsðhklÞj � jFobsj�
2

� �1=2 P
hkl

½jFcalcðhklÞj � jFcalcj�
2

� �1=2
:

ð4Þ

ML in (1) is the maximum-likelihood score defined in Read

(2001a).

The last three terms in (1) represent the penalties on the

clashes between surface atoms (ESS), the clashes between core

and surface atoms (ECS) and the clashes between core atoms

(ECC) of the protein copies, where the penalty energies take a

unified form of E = r2
vdw� r2 if the distance of two target atoms

r < rvdw or E = 0 otherwise. The van der Waals distance cutoff

is set as rvdw = 3 Å. The weight on clashes varies depending

upon whether they involve surface or core atoms. The idea is

for the surface clashes to a have low weight since these clashes

might indicate a minor error in the model or in the placement

of the model, while clashes involving core atoms usually

indicate that either the model is far from the native and/or that

the MR solution is incorrect, and therefore a stronger weight

is assigned. To increase the speed of simulations, only C�

atoms are used in the calculation of the clash score. A C� atom

is defined to be a core atom if its accessible surface area is

below 20%, where the radius of each C� atom for the purpose

of calculating accessible surface area is set to 4 Å. The

accessible surface area is calculated using the LCPO method

(Weiser et al., 1999). In the first round of simulation the clash

scores and the ML score are turned off to speed up the

simulation process, but in the second round both parts of the

match and clash scores from (1) are used (Fig. 1). Later, the

ML score is turned on.

To determine the weighting parameters, we created 1387

structural decoys from 40 nonredundant proteins using

3DRobot (Deng et al., 2016; see below). Here, the decoys refer

to computationally generated structural models of the protein

of varying quality (i.e. r.m.s.d. and TM-score) relative to the

research papers

608 Virtanen & Zhang � Molecular replacement using low-accuracy models Acta Cryst. (2018). D74, 606–620



native. For each decoy model MR-REX creates 300 candidate

MR solutions, and for each set of 300 candidate MR solutions

that with the lowest XScore is selected to calculate the average

crystallographic r.m.s.d. (cRMSD) of the 1387 decoys. To

calculate the cRMSD, the protein model is first superimposed

on the native structure such that the electron-density corre-

lation is maximized; this is considered to be the best placement

of the search model. The fitmap command of Chimera

(Pettersen et al., 2004) was used to place the protein model

into the electron-density map of the native protein. Next, the

C� r.m.s.d. without superimposition is calculated between the

MR candidate solution and the best placement of the search

model for all pairs of symmetry mates, which is termed the

cRMSD. All possible alternate origins are considered, and the

lowest cRMSD is reported. Here, solutions with a cRMSD of

>8 Å are considered to be equally bad and their cRMSDs are

all set to 8 Å; this cutoff can prevent some spurious large

reductions from decreasing the average cRMSD values. Next,

a quick Monte Carlo (MC) simulation is performed to search

through the parameter space with movement involving

random changes to one randomly picked weight. After each

movement, the candidate MR solutions are re-ranked based

on (1) using the new weighting parameters and the average

cRMSD values are calculated based on the newly selected MR

solutions. The MC iteration continues until there is no further

improvement in the cRMSD within each addition of 100 MC

cycles. The initial weight parameter (wi) is taken as a random

value between 0 and �i /�D, with �i being the standard

deviation of the ith scoring term and �D being that of D in (1).

Multiple runs with different initial parameters are found to

converge to the same optimized weights: w1 = 0.646, w2 =

0.503, w3 = 18.09, w4 = 0.027, w5 = 0.302 and w6 = 2.876. The

ML score has by far the highest weight and dominates the

other terms.

We note that although the MR-REX search is driven by the

XScore, the XScore or the Z-score alone are not good indi-

cators of the success of MR solution. However, we found that

the greatest sign of success is that there is a tight cluster of

solutions with Xscores far lower than other placements, a

finding analogous to the approach used for protein structure

prediction (Zhang & Skolnick, 2004a).

2.3. Molecular-replacement search by replica-exchange
Monte Carlo sampling

2.3.1. Setting the replica temperatures. The temperature of

the nth replica in the REMC simulations is given by

Tn ¼ Tmin

Tmax

Tmin

� �ðn�1Þ=ðnrep�1Þ

; ð5Þ

where nrep = 300 is the total number of replicas. Since different

proteins have different sizes and energy scales, we set the

temperature ranges according to the initial XScore of the

systems, i.e. the highest temperature (Tmax) equals 0.1 times

the initial score of the worst-scoring replica and the lowest

temperature (Tmin) is 0.005 times the initial score of the best-

scoring replica; this temperature set can help to ensure that

the simulations of different protein systems have an approxi-

mately constant acceptance rate of the replica-swap move-

ments.

The REMC simulation consists of up to 9000 cycles, where

each cycle runs 20 local movements. At the end of each cycle,

global swap movements are attempted iteratively between

pairs of adjacent replicas which are accepted/rejected on the

standard Metropolis criterion (Metropolis et al., 1953).

Supplementary Fig. S1 shows a typical example of the XScore

versus the REMC cycles for one of the models of the

hexamerization domain of N-ethylmaleimide-sensitive fusion

protein (PDB entry 1d2n), which shows that the nrep = 300 is

high enough to maintain sufficient overlaps of the simulations,

which is essential to give a high acceptance rate for the replica

swaps.

2.3.2. Rescaling MC movements. Before the start of the MC

simulations, the center of mass of the protein is translated to

the origin. The placement of the protein is then specified by

rotations around and translations along the x, y and z axes.

There are a total of six degrees of freedom per protein, where

the rotational degrees of freedom are effectively applied first

and the protein is then effectively translated. If there are

multiple copies in the asymmetric unit, the proteins can be

placed one by one or all at once. The default is to place them

all at once. In all cases in this paper there is only one copy of

the protein in the asymmetric unit. The sizes of the movements

are randomly picked according to a Gaussian distribution, the

standard deviation of which is updated for each replica and

degree of freedom once every 50 steps, i.e.

�i;j ¼

P
k

ðs2
ijkjdijkjpijkÞ=qijkP

k

ðjdijkjpijkÞ=qijk

; ð6Þ

where �i,j is the standard deviation of the movement size

distribution of the ith degree of freedom of the jth replica, sijk

is the size of the kth movement of the ith degree of freedom of

the jth replica, dijk is the change in XScore resulting from the

movement, pijk is the probability of accepting the movement

and qijk is the probability of making the movement. At high

temperatures pijk tends to be high even for large movements

(large sijk), and therefore �i,j will tend to be larger at high

temperatures than at low temperatures. Thus, (6) ensures that

low-temperature replicas make smaller movements while

high-temperature replicas make larger movements, to keep a

reasonable acceptance rate of movements in different replicas.

In addition, the movement sizes of the low-temperature

replicas tend to decrease throughout the simulation as

convergence is reached to fine-tune the conformational search

near low-energy basins, as pijk decreases for large movements

during the simulation.

The standard deviation of the size distributions of the initial

translation and rotation movements is set as

�tran
i;j ¼ ai�

tran
min þ aið�

tran
max � �

tran
min Þðj� 1Þ=ðnrep � 1Þ

�rota
i;j ¼ �

tora
min þ ð�

rota
max � �

rota
min Þðj� 1Þ=ðnrep � 1Þ

�
; ð7Þ
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where ai are the unit-cell vector lengths, �tran
min = 0.01, �tran

max = 0.5,

�rota
min = 0.02 and �rota

max = 0.12. After a translation move, the

structure factor is evaluated by

FðH;�xÞ ¼
P

s

FsðHÞ expðRs�xHÞ; ð8Þ

where F(H, �x) is the structure factor of the unit cell when the

protein has been translated by �x, H is the Miller index

vector, Fs is the structure factor of the sth symmetry mate and

Rs is the associated rotation matrix. (8) greatly speeds up

movements involving translations because recalculating the

structure factor owing to the orientation is not necessary.

When a rotation is performed, the new structure factor is

calculated using a fast rotation method (Castellano et al.,

1992). Since there is a difference in the effectiveness of each

movement type per unit time, the ith degree of freedom of the

jth replica is sampled with a probability equal to

pi;j ¼

P
k

jdijkjpijk

�P
k

�tijkP
n

P
k

jdnjkjpnjk

�P
k

�tnjk

; ð9Þ

where �tijk is the time taken to calculate �dijk and the asso-

ciated scattering amplitudes, and n runs over all degrees of

freedom. Translations tend to be sampled more than rotations,

since they are faster to compute than rotations.

2.3.3. Search termination and model selection. After every

50 REMC cycles, the standard deviations of the XScores of all

replicas and the 30 lowest-temperature replicas are calculated.

If the standard deviation of the XScores of the 30 lowest-

temperature replicas is lower than 10% of the standard

deviation for all 300 replicas, the cRMSDs of the lowest-

temperature replica to the other five lowest-temperature

replicas are calculated. If all of the calculated cRMSDs are

below 0.5 Å the simulations are considered to have converged,

the REMC search is terminated early to save CPU time and all

300 potential solutions are output. In case an early termination

does not occur, the simulation will run for a predetermined

time, which is set in the parameter file. MR-REX converged

early in 10% of cases. The average time to early convergence is

one and half hours. The maximum run time of each MR-REX

round used in this paper is 2 h, although a benchmark test

showed that the average performance of MR-REX is reduced

by only 5% when it is run for only 1 h. The speed of MR-REX

is mainly determined by the number of reflections used and

the space group of the crystal, but not by the size of the

protein since MR-REX uses a method similar to that of

Castellano et al. (1992) to calculate the scattering in an effi-

cient manner. The placement with the minimum XScore is

selected as the final MR model by MR-REX.

Overall, MR-REX implements an iterative Monte Carlo

simulation procedure, as shown in Fig. 1, which enables a

convenient incorporation of the steric clash score and occu-

pancy optimization. To make the simulations more efficient,

the REMC simulations are performed in multiple rounds,

where a new feature of the program is turned on each round.

Some features of the program are slow and may not be needed

for successful MR, so they are not used at first and are then

turned on in later rounds. For example, in the first round of

MR-REX simulations the clash score is turned off and all

occupancies are equal to 1, in the second round the clash score

is turned on, and in the third round occupancy optimization

(see below) is performed, which aims to dynamically remove

some of the structurally variable or incorrectly modeled

regions through Monte Carlo simulations.

2.4. Occupancy optimization

Since incorrect portions of the protein model affect the

success rate of MR more than deletions, MR-REX implements

an occupancy-optimization procedure to delete incorrect

portions of the protein model. Although it cannot be known

with certainty which portions of the protein model are incor-

rect, it is possible to make an educated guess as to which

regions are inaccurate. For instance, the termini, unstructured

(or intrinsically disordered) regions and surface residues are

more likely to be inaccurate than other regions. Here, the

categorization of different structure regions is determined by

DSSP (Frishman & Argos, 1995).

To make a quantitative estimation of the local structure

quality, we take the same set of 1387 decoy models from the

training data set, which are superimposed on their native

structures using the TM-score (Zhang & Skolnick, 2004b). The

probability of the deviation of each residue from the native is

calculated along with its distance from the nearest terminus in

sequence space (dtail), its solvent-accessible surface area (SA)

and its secondary-structure type (SS), i.e.

pðdjdtail; SA; SSÞ ¼
nðdjdtail; SA; SSÞ

Nðdtail; SA; SSÞ
; ð10Þ

where n(d|dtail, SA, SS) is the number of residues that have a

deviation d from the native for a given bin of (dtail, SA, SS)

and N(dtail, SA, SS) is the total number of residues in the bin.

Before the REMC simulation, the probability that the

residue deviates from the native by d > 2 Å is calculated

according to (10). A residue is considered to be potentially

inaccurate if the estimated probability that the residue devi-

ates from the native by >2 Å is greater than 40%. Neighboring

inaccurate residues are grouped together into segments and

the ten longest segments are subjected to random occupancy

changes during the REMC simulations. If a segment is chosen

at random the occupancies of the atoms in that segment will

either be changed from 1 to 0 or from 0 to 1, with the

acceptance of the changes guided by the standard Metropolis

criterion (Metropolis et al., 1953). The benchmark results show

that up to six occupancy-optimization iterations are needed to

achieve the best results.

Estimates of local error can also be used by Phaser by either

setting B factors according to predicted errors (Bunkóczi et al.,

2015) or removing regions that are predicted to be inaccurate.

2.5. Structure-factor calculation for X-ray diffraction

To facilitate the calculation of the structure factor of the

entire unit cell for protein placements, we first move the center

of mass of the protein to the origin of the Cartesian system and
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orient the structure such that the principal axes of the protein

line up with the unit-cell vectors. The X-ray diffraction is

calculated for space group P1 on a finely spaced grid of non-

integer value Miller index vectors, H, using

FP1
ðHÞ ¼

Pnatom

j

gjðHÞ exp 2�iHXj �
BjðHCf Þ

2

12

" #
; ð11Þ

where natom is the number of atoms, Xj is the location of the jth

atom in fractional coordinates, Bj is the B factor and Cf is

the matrix converting Cartesian coordinates to fractional

coordinates. gj(H) is the structure factor of the jth atom with

the excluded volume taken into account using

gjðHÞ ¼ fjðHÞ � �fexc;jðHÞ; ð12Þ

where fj(H) is calculated according to Rez et al. (1994), � is the

electron density of the buffer (set to 0.334 e� Å�3) and

fexc, j(H) is the scattering of a Gaussian sphere with a volume

equal to the excluded volume of the atom, i.e.

fexc;jðHÞ ¼ �
2=3r3

exc;j exp½��2
ðHCf Þ

2
r2

exc;j�; ð13Þ

where rexc, j is the radius of atom j corresponding to the

excluded volume. FP1
ðHÞ is effectively rotated and translated

using the procedure in Castellano et al. (1992) in order to

identify the sum of the contributions of the individual

symmetry mates, which equal the total structure factor. When

performing occupancy optimization, a separate FP1
ðHÞ is

calculated for each segment and the scatterings for the

appropriate segments are summed.

It was found that the calculated X-ray diffraction at low and

high resolution has been systematically overestimated, most

likely owing to imperfections in how the buffer is accounted

for and the lack of side chains. A correction factor for the

calculated X-ray intensity as a function of q is estimated in the

following way. X-ray diffraction reflection intensities are

calculated for a set of 1078 nonredundant proteins randomly

collected from the PDB using PISCES (Wang & Dunbrack,

2003). These 1078 proteins are from the same list of proteins

obtained by PISCES from which the test and training proteins

were taken. The proteins in the test set described in x3.1 are

excluded from this list. The average scattering intensity is

calculated in every 0.1 Å�1 q bin and compared with the

experimental data. For every protein, the ratio of the average

calculated intensity in every 0.1 Å�1 q bin to the experimental

intensity is calculated; thus, the ratio of the calculated

diffraction intensity to the experimental diffraction intensity is

calculated as a function of q. The results from the protein set

are combined and the average ratio of the calculated diffrac-

tion intensity to the experimental diffraction intensity is

calculated as a function of q. These data are used to provide a

correction factor that reduces the simulated X-ray diffraction

error. This helps to compensate for errors in properly

accounting for the effect of the buffer and the lack of side

chains.

2.6. B-factor setting and calculation

The B factor is initially set as Binit,j = 20 Å2 in MR-REX and

the structure factor is then calculated by

FcalcðHÞ ¼
Pnsym

s

Pnatom

j

ghðHÞ exp 2�iHðRsXj þ TsÞ �
Binit;jq

2

48�2

� 	
;

ð14Þ

which can be different from the observed diffraction

FobsðHÞ ¼
Pnsym

s

Pnatom

j

ghðHÞ exp 2�iHðRsXj þ TsÞ �
Bexp;jq

2

48�2

� 	
;

ð15Þ

where Bexp,j is the actual B factor of the jth atom. The

difference between Binit,j and Bexp,j is thus

�B ¼ Bexp;j � Binit;j ¼ �
48�2

q2
ln
jFobsðHÞj

jFcalcðHÞj

� 	
; ð16Þ

which can be estimated by linear regression of the natural log

of the experimental amplitudes to the calculated amplitudes.

The value of Binit,j + �B is used as the final B factor in the

diffraction calculation.

3. Results

3.1. Data sets

To train and test MR-REX, we collected a set of 78 non-

redundant proteins with a pairwise sequence-identity cutoff of

30% from the PDB using PISCES. All of the testing proteins

are at most distantly related to the training proteins. These

proteins contain one chain and have a resolution higher than

3 Å, R factors lower than 0.3 and sequence lengths of 40–300

residues. From the list of proteins found using PISCES, 40

proteins were randomly selected to train the MR-REX

program (see x2) and another 38 randomly selected proteins

were used for testing.

The structure decoys for the proteins were created by

3DRobot (Deng et al., 2016), a program designed for the

creation of nonhomogenous and well packed protein confor-

mations from the native structure based on I-TASSER

structure-assembly simulations (Yang et al., 2015). Here,

multiple levels of threading templates, including those with

very low sequence identity, are used in 3DRobot/I-TASSER to

generate protein-like conformations of varying quality. As the

decoys are built for the query sequences, the 3DRobot decoys

have the same side chains as the query, but the side chains are

removed before use in MR. In order to have structures of

diverse quality, the 3DRobot decoys are split into 40 bins in

TM-score space from 0.59 to 0.99, where one model is

randomly selected from each bin for each protein; this results

in 1303 (1387) nonredundant structure models that constitute

our test (training) model set. As some TM-score bins have no

decoys, the number of final decoy models (1303 or 1387) is

slightly lower than 38 � 40 or 40 � 40. The decoy structures

for both testing and training proteins can be downloaded at

https://zhanglab.ccmb.med.umich.edu/MR-REX/DataSets.tar.gz.
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3.2. A comparison of failure points of MR by MR-REX and
Phaser on 3DRobot decoys

Not all of the structural decoys can be correctly placed in

the unit cell. For each protein up to 40 decoy structures from

3DRobot with nearly continuous accuracy are attempted,

where the decoy with the worst structure for which MR is

successful is recorded. Table 1 lists the worst model according

to the TM-score (Zhang & Skolnick, 2004b; Xu & Zhang,

2010) for which MR-REX and Phaser succeeded for each

protein, where a success is defined as the cRMSD between the

MR placement and the best placement of the search model

being below <2 Å. Using this criterion, the average point of

failure is TM-score = 0.76 for MR-REX and TM-score = 0.77

for Phaser. The failure-point TM-score comparison can be

visualized in Fig. 2. Here, we note that TM-score is not a

perfect measure of model quality, especially for multi-domain

proteins, because the model may capture both domains

accurately but have an incorrect orientation between the two

domains, which will result in a low TM-score value. Never-

theless, we found that for all of the 14 multi-domain proteins

in our benchmark data set most of the decoy structures have a

similar domain orientation relative to the native structure (see

Supplementary Fig. S2 as an illustrative example).

We also tried to assess the failure points of the algorithms

using the criterion of structure determination, where MR is

considered to be successful if Rfree < 0.4 and the TM-score of

the final model is higher than that of the initial input model

when running the phenix.autobuild program (Adams et al.,
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Table 1
Summary of MR results by MR-REX and Phaser on 38 test proteins with decoy models generated by 3DRobot and LOMETS.

For each protein multiple decoy models are attempted, where the decoy with the lowest TM-score (for the 3DRobot decoys) or with the lowest sequence identity
(for the LOMETS templates) which is successfully placed with a cRMSD of <2 Å is reported in the last four columns. The data in parentheses are obtained when a
successful case is defined based on phenix.autobuild, i.e. an Rfree of <0.4 and the model quality is improved. M and CC in the fold class column indicate membrane
and coiled coil, respectively.

Worst TM-score
Worst sequence
identity (%)

Protein
PDB
code

Length
(amino
acids)

Resolution
(Å)

Solvent
content

Fold
class

Space
group Phaser MR-REX Phaser MR-REX

1d2n 246 1.75 52 �/� P6 0.83 (0.83) 0.82 (0.86) 70 (70) 27 (70)
1okc 292 2.20 55 M P21212 0.76 (0.89) 0.76 (0.90) 52 (52) 52 (52)
1r0u 142 1.75 55 � P3221 0.84 (0.84) 0.84 (0.84) 100 (100) 100 (100)
1su0 136 2.30 42 �+� I422 0.79 (0.87) 0.76 (0.83) 22 (22) 22 (46)
1v05 96 1.43 35 � P6122 0.77 (0.77) 0.77 (0.83) 31 (31) 31 (31)
1vpq 260 2.20 44 �/� C2221 0.82 (0.87) 0.80 (0.91) 33 (100) 33 (33)
1x8y 74 2.20 71 CC P6522 0.81 (0.59) 0.77 (0.59) 64 (64) 64 (64)
2bou 137 1.90 61 � P21212 0.76 (0.86) 0.87 (0.87) 99 (99) 99 (99)
2il5 162 2.30 61 �+� P62 0.74 (0.85) 0.67 (0.85) 12 (17) 12 (17)
2p17 249 1.52 32 � P212121 0.77 (0.88) 0.79 (0.88) 35 (35) 35 (35)
2rbk 261 1.00 46 �/� P212121 0.79 (0.91) 0.90 (0.90) 21 (30) 30 (100)
2yq9 213 1.90 43 �/� P212121 0.74 (0.84) 0.77 (0.82) 48 (79) 48 (79)
3b7c 121 1.70 56 �+� P6522 0.83 (0.84) 0.75 (0.83) 15 (15) 15 (15)
3bw6 137 2.50 66 �/� P3221 0.79 (0.79) 0.72 (0.72) 40 (40) 40 (40)
3chv 279 1.45 40 �/� C121 0.74 (0.86) 0.77 (0.93) 61 (97) 24 (14)
3fzx 212 2.20 59 � P6422 0.83 (0.83) 0.81 (0.87) 41 (41) 41 (40)
3hyn 186 1.20 34 �/� P212121 0.86 (0.88) 0.81 (0.83) 96 (96) 96 (96)
3k93 223 2.15 60 �/� P321 0.74 (0.79) 0.74 (0.81) 98 (98) 98 (98)
3mt0 281 1.58 40 �/� P1211 0.81 (0.81) 0.84 (0.84) 30 (44) 44 (44)
3n2q 282 2.55 55 �/� P3121 0.85 (0.91) 0.86 (0.91) 40 (40) 40 (40)
3onj 97 1.92 35 � P212121 0.80 (0.83) 0.74 (0.88) 100 (100) 100 (100)
3pu6 138 2.60 44 �/� P212121 0.76 (0.88) 0.68 (0.84) 98 (98) 98 (98)
3pyw 178 1.80 65 � P41212 0.70 (0.70) 0.72 (0.72) 100 (100) 100 (100)
3q6b 155 1.50 39 �/� C121 0.62 (0.59) 0.62 (0.59) 18 (18) 18 (18)
3vqf 85 1.20 43 �/� C121 0.70 (0.70) 0.68 (0.77) 27 (27) 22 (22)
3vwc 146 1.50 50 � C121 0.76 (0.76) 0.65 (0.80) 22 (22) 12 (22)
3zdb 246 1.47 59 �/� P21212 0.79 (0.79) 0.76 (0.81) 34 (34) 34 (34)
4a3z 136 1.55 45 � P43212 0.80 (0.80) 0.79 (0.80) 98 (98) 22 (98)
4dcd 184 1.69 43 � I222 0.78 (0.85) 0.71 (0.85) 44 (44) 44 (44)
4is7 140 2.75 70 � P6522 0.80 (0.80) 0.78 (0.81) 59 (59) 18 (59)
4kr1 219 2.50 52 �/� P6322 0.80 (0.80) 0.73 (0.82) 40 (40) 40 (54)
4l8g 157 1.52 38 �/� P636 0.75 (0.81) 0.75 (0.81) 25 (37) 25 (37)
4lvp 124 2.32 55 � P6422 0.77 (0.88) 0.69 (0.82) 100 (100) 100 (100)
4m6t 177 2.50 74 �+� H32 0.70 (0.81) 0.74 (0.74) 100 (100) 100 (100)
4mdn 94 1.91 68 � P41212 0.64 (0.64) 0.65 (0.64) 67 (67) 67 (67)
4mjf 225 1.99 50 � C121 0.79 (0.86) 0.74 (0.88) 52 (97) 52 (97)
4nbr 268 1.35 41 �/� I222 0.88 (0.88) 0.84 (0.91) 22 (22) 22 (22)
4oq4 186 1.49 59 �/� P3121 0.80 (0.80) 0.79 (0.84) 22 (22) 22 (24)
Average 183 1.88 60 0.77 (0.82) 0.76 (0.81) 54 (59) 49 (58)



2010; Afonine et al., 2012; Terwilliger, 2004; Terwilliger et al.,

2008) based on the given MR solution. This criterion is similar

to what has been used in previous MR studies (Giorgetti et al.,

2005; Wang et al., 2016). The last iteration of MR-REX, which

used the ML score during the REMC search, was not used in

this analysis. The comparison of MR-REX and Phaser is

tabulated in parentheses in Table 1, where the average failure

points of MR-REX and Phaser are TM-scores of 0.81 and 0.82,

respectively. The difference in the worst TM-score is not

statistically significant, with the p-value of Student’s t-test

being 0.21.

Here, the TM-scores of the testing models at the failure

points according to a phenix.autobuild Rfree of <0.4 are

significantly higher than those according to a cRMSD of <2 Å

for both MR-REX and Phaser, indicating that the first

criterion is generally stricter than the second. There are,

however, two cases (PDB entries 1x8y and 3q6b) for which the

failure-point TM-scores by MR-REX according to Rfree < 0.4

are obviously lower than those according to cRMSD < 2 Å.

PDB entry 1x8y from the human lamin coil 2B is a small

protein consisting of a single �-helix (Supplementary Fig. S3).

Translating PDB entry 1x8y by a single helix turn leaves the

electron density, which is what matters in X-ray crystallo-

graphy, largely unchanged but results in a cRMSD that is over

2 Å. PDB entry 3q6b is the BamA POTRA4-5 protein from

Escherichia coli, the topology of which has an approximate

180� rotational axis which leaves the electron density

approximately the same but results in a large cRMSD

(Supplementary Fig. S3b). Overall, although Rfree < 0.4 seems

to be a stricter and more practical criterion to assess the

success of MR than cRMSD < 2 Å, the threshold depends on

the power and efficiency of the follow-up structure-refinement

method. It can be expected that even if phenix.autobuild is not

able to solve a protein structure with a low cRMSD, the case

may be solved by other methods. On the contrary, the defi-

nition of cRMSD represents the structural closeness of the

MR model to the best placement of the probe model, which is

independent of the follow-up structure-determination

programs. Therefore, we will use both criteria in our bench-

mark experiments.

3.3. Aggregate results for MR on 1303 decoy structures

To further examine the performance of the methods in

detail, in Fig. 3 we present the cRMSDs of MR-REX versus

Phaser for all 1303 structure decoys. The data were split into

three different groups based on the accuracy of the 3DRobot

structure decoys. Fig. 3(a) displays the results for the 285 high-

solution decoys with an r.m.s.d. to the native of below 2 Å. In

this r.m.s.d. range the vast majority of these cases succeeded

using both methods, but the number of failures with MR-REX

were slightly fewer than those with Phaser. If we consider a

cRMSD of <2 Å as successful MR, for example, MR-REX

failed in 11 cases, whereas Phaser failed in 15 cases.

When the decoy r.m.s.d. to the native ranges from 2 to 4 Å

the number of failures increases dramatically (Fig. 3b). Again,
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Figure 3
The cRMSDs of MR solutions by MR-REX versus those by Phaser on 1303 structure decoys. The results are split according to the r.m.s.d. of the initial
decoys in the ranges (a) <2 Å, (b) 2–4 Å and (c) >4 Å. For the cases in which Phaser did not produce a result, the cRMSD is set to 40 Å for the purposes
of the plot.

Figure 2
The TM-score of the worst initial structure model to succeed with
MR-REX versus that with Phaser. For each target, up to 40 decoys
created by 3DRobot are attempted, where the worst decoys with the
highest TM-score with a successful MR solution are shown in the plot.



the number of cases that succeeded using MR-REX and failed

using Phaser far surpasses the number of cases in which

Phaser succeeded but MR-REX failed, i.e. in 77 of the 550

medium-accuracy decoys MR-REX succeeds but Phaser fails,

while the reverse occurs in only 31 cases.

For the lowest-accuracy decoys with an r.m.s.d. to the native

of >4 Å, the majority of cases failed for MR by both MR-REX

and Phaser. Nevertheless, MR-REX could still generate an

MR solution with a cRMSD below 2 Å for 60 cases, while this

number was 43 for Phaser.

Of the 1303 decoys, MR-REX generated correct MR solu-

tions for 699 cases, while Phaser did so for 632 cases, according

to the criterion of a cRMSD of <2 Å. In 123 cases MR-REX

correctly placed a decoy structure that Phaser was unable to

place, while the reverse occurs in 56 cases; this shows that the

two methods are complementary to each other. Combining the

results of the two programs, we obtained 755 cases for which at

least one of the programs succeeded. Such a complementary

effect is most significant for the low-accuracy protein models.

When the r.m.s.d. of the decoy structures is higher than 4 Å,

for example, there are only 23 cases that can be commonly

solved by both MR-REX and Phaser, while there are 80 cases

that can be solved by either MR-REX or Phaser.

Similarly, if we use the criteria of Rfree and TM-score of the

phenix.autobuild models to assess the success rate of MR,

MR-REX correctly placed 540 decoy structures while Phaser

correctly placed 532 decoys. In 70 cases MR-REX correctly

placed a decoy that Phaser was unable to place, while the

reverse occurred in 62 cases. If we combined the MR-REX and

Phaser results, we obtained 602 cases for which at least one of

the programs succeeded.

Again, the aggregate decoy results based on the two

successful criteria are not entirely consistent. There were 39

decoy cases with a cRMSD of >2 Å by MR-REX which

succeeded according to a phenix.autobuild Rfree of <0.4, most

of which are structural decoys from PDB entries 1x8y and

3q6b owing to their approximate rotational and translational

symmetries as displayed in Supplementary Fig. S3. There were

198 cases which succeeded according to a cRMSD of <2 Å but

failed according to a phenix.autobuild Rfree of <0.4, demon-

strating that there is considerable room for the further

development of structure-refinement algorithms.

Finally, we note that the median cRMSDs of MR-REX and

Phaser are 1.52 and 2.53 Å, respectively, for the 1303 decoys.

This difference is much larger than the difference shown in the

number of cRMSDs of <2 Å. This means that nearly half of

the MR solutions generated by MR-REX have a very low

cRMSD (<1.52 Å), even though only 77% of correctly placed

models resulted in a successful structural solution. This is

important because some of these low-cRMSD MR solutions

may not have been solved by the current structure-refinement

programs (phenix.autobuild) but may be solved by future

advanced methods. In contrast, Phaser solutions have a higher

median cRMSD, indicating that many of the MR solutions

have an incorrect placement except for those with a cRMSD

of <2 Å, which cannot benefit from potentially advanced

model-building methods.

3.4. The major difference between MR-REX and Phaser is for
low-accuracy decoys

To illustrate the dependence of MR on decoy accuracy, in

Fig. 4(a) we present the success rates of MR-REX and Phaser

as a function of the r.m.s.d. of the initial model to the native

when using a cRMSD of <2 Å to assess success, while Fig. 4(b)

shows the data versus the TM-score of the initial models. As

expected, the success rate of both programs depends on the

quality of the initial probe models, i.e. the success rate

decreases with increasing r.m.s.d. or decreasing TM-score.

Interestingly, the performance of the MR program appears to

be more sensitive to the TM-score of the probe models than

the r.m.s.d. If we use a TM-score of >0.8 as an indicator of
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Figure 4
The percentage of successful MR cases as a function of r.m.s.d. and TM-score of the starting model to the native. MR-REX is represented in black,
PHENIX is represented in dark gray and the combined results are represented in light gray.



success, for example, the false-positive (FP) rate and false-

negative (FN) rate with a cRMSD of <2 Å are 0.11 and 0.17,

respectively. The lowest FP and FN rates are 0.17 and 0.20,

respectively, if using an r.m.s.d. of <3.25 Å, which are both

higher than those for the TM-score.

Accordingly, when the structure model has a TM-score of

>0.95 MR-REX and Phaser are almost 100% successful. Both

MR-REX and Phaser experience a sharp drop in their success

rates when the TM-score is below 0.85, which usually corre-

sponds to the accuracy cutoff for distant versus closely

homologous structure prediction (Huang et al., 2014; Mariani

et al., 2011; Zhang, 2009). However, it is in this region that

MR-REX obviously outperforms Phaser. For the structure

models with a TM-score in the range 0.75–0.8, for example, the

success rates for MR-REX and Phaser are 42% and 29%,

respectively. Overall, among the 834 cases with a TM-score of

<0.85 MR-REX succeeded in 249 cases while Phaser

succeeded in 192 cases; thus, MR-REX increased the number

of successes by 30%. If we reduce the cutoff to a TM-score of

<0.8, this number increases to 49%, which indicates that the

difference between MR-REX and Phaser mainly occurs in

cases with a low-accuracy starting model.

3.5. The effects of clash, occupancy optimization and ML
score on MR

As mentioned in x2, MR-REX implements multiple-step

Monte Carlo simulations, in which a new feature is turned on

in each step (Fig. 1). In our test, the first round of MR-REX

simulations generated 536 successful cases with a cRMSD <of

2 Å. In the second round, after the clash score was turned on,

the number of successful cases increased to 639; this is 19%

higher than the first round, indicating that optimization of the

clash score can further improve the success rate of MR.

Moreover, if we define an absolute failure as a case in which a

placement of the protein with a cRMSD of >2 Å has been

generated in the simulations but has a lower XScore than the

native placement and any outputted placement of the protein

with a cRMSD of <2 Å (i.e. these cases will never succeed with

the given scoring function and search space), the sum of the

number of successes and absolute failures may be used as an

indication of the convergence of the MR search. After the first

two rounds, we found that the sum of the numbers of successes

and absolute failures was equal to the number of decoys,

indicating that the simulations had converged, because

running additional rounds with the current settings would

probably not improve the results.

Starting at the third round, occupancy optimization was

turned on and the number of successful cases obtained by

MR-REX was further increased from 639 to 681 (see Table 2).

Here, we note that the accuracy of the residue-quality

prediction, which was used to guide segment categorization

during occupancy optimization, is still low, with a Matthews

correlation coefficient (MCC) of 0.269 to the actual deviation

of the residues in the benchmark data, where a residue is

considered to be positive when its C� atom deviates from the

native by more than 2 Å. Such a substantial improvement in

MR is probably not owing to the correct identification of

inaccurate segments at the beginning, but rather is owing to

the dynamic MC movements and selection process of the

optimal occupancy in the REMC search process. Seven

iterations have been performed in this round, where each

starts from the ending placement of the previous iteration. In

the first two iterations using occupancy optimization, 19 new

successes were achieved beyond the first two rounds of

F-match and clash optimizations. The efficiency of the

implementation of further iterations gradually decreases and

the last two iterations of occupancy optimization generated

only seven additional successes, indicating that the results are

nearing convergence at the end of six iterations. The number

of successful cases in all iterations and rounds is summarized

in Table 2.

One additional iteration of MR-REX, lasting 6 h, was

performed with the ML score. In this iteration 18 additional

decoys were correctly placed by MR-REX.

3.6. What factors affect the success of MR?

In order to understand why the failure point of MR varied

from protein to protein, in Supplementary Table S2 we list the

worst TM-score structures for which MR succeeds, according

to the criterion of a cRMSD of <2 Å, versus a number of

possible factors that may affect the MR results, including the

number of residues in the protein, the volume of the unit cell,

the packing density of the unit cell in terms of the number of

residues per Å3, the shape of the protein, the number of

symmetry mates in the unit cell, the number of HETATMs

(excluding waters) per residue and the number of reflections

used for MR. Here, the shape of the protein is specified by the

elongation, i.e. "= (Ic
1/2
� Ia

1/2)/(Ia
1/2 + Ib

1/2 + Ic
1/2), where Ic is the

largest principal moment of inertia, Ia is the smallest principal

moment of inertia and Ib is the second largest principal

moment of inertia. The elongation of a sphere is 0 and the

elongation of a line is 1.

Table 3 lists the correlation coefficients of the MR results

with seven feature parameters as obtained by both single- and

multi-variable linear regressions. There are many factors that
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Table 2
MR results of MR-REX at different rounds and iterations of simulations
on 1303 3DRobot structure decoys.

Round
No.

Search-scoring
function

No. of
iterations

Median
cRMSD
(Å)

hcRMSDi†
(Å)

No. of
successes‡

1 Match score 1 14.58 4.89 536
2 Match score + clash 1 2.49 4.25 639
3 Match score + clash +

occupancy
1 2.15 4.17 641
2 1.87 4.07 657
3 1.74 4.02 667
4 1.63 3.98 674
5 1.61 3.96 676
6 1.55 3.94 681

4 Match score + clash +
occupancy + ML

1 1.52 3.90 699

† Average cRMSD of all decoys where cRMSD is set to 8 Å if it is higher than
8 Å. ‡ Successful MR is defined if the cRMSD is below 2 Å.



affect the success or failure of MR and these may confound

the results presented here. The multi-variable regression

generally gives more meaningful results than the single-

variable regression as the multi-variable linear regression

reduces confounding effects; but since there are only 38 data

points the error bars resulting from multi-variable linear

regression are large. Multi-variable regression is not calcu-

lated using the number of residues in the protein as it is not an

independent variable: it can be determined from the volume,

the number of residues per Å3 and the number of symmetry

mates.

For the single-variable linear regression, the strongest

correlation for MR-REX is with the elongation of the struc-

ture, although it is only a weak correlation with r2 =�0.38. The

more elongated the protein is, the more likely it is that

MR-REX will succeed; this is understandable, as having an

elongated protein should make it easier to find the correct

orientation of the protein. It is therefore

expected that MR-REX would find it

easier to correctly orient proteins that

were not approximately spherical in

shape. We also found a weak but posi-

tive correlation between the elongation

and the failure point of Phaser with

r2 = 0.16, i.e. the more elongated the

protein is, the harder it would be for

Phaser to succeed; this is probably

because the scoring function used by

Phaser is related to the Patterson func-

tion, which is expected to perform

worse for elongated proteins as it is

more difficult to separate intramole-

cular and intermolecular Patterson

vectors for elongated proteins. The

strongest correlation for Phaser is from the number of resi-

dues (r2 = 0.37), indicating that Phaser has a higher success

rate for smaller proteins; but the correlation for MR-REX is

weaker with r2 = 0.23.

Multi-variable linear regression reveals a strong positive

correlation between the unit-cell volume and the failure point

for MR-REX (r2 = 0.77), and a relatively weaker correlation

for Phaser (r2 = 0.31). There is also a negative correlation

between the number of symmetry mates in the unit cell and

the failure point for MR-REX (r2 = �0.63) and Phaser (r2 =

�0.31). Another factor which influences the success or failure

of MR but that is not included in Table 3 is the existence of

alternate placements of the protein which give similar electron

densities as the native but are incorrect. This could occur for

proteins that have approximate rotational symmetry. Supple-

mentary Fig. S4(a) shows as an example the YmoB protein

(PDB entry 2mn2), which has a four-helix bundle fold with an
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Figure 5
Representative examples in which either MR-REX or Phaser succeeds in MR. (a) A decoy structure of the human Paf1 protein (PDB entry 4m6t) that
has an r.m.s.d. of 7.44 Å to the native, which was successfully placed by MR-REX with a cRMSD of 0.47 Å and a phenix.autobuild Rfree of 0.27 but was
not successfully placed by Phaser. (b) A decoy structure of the haloalkanoic acid dehalogenase enzyme (PDB entry 2rbk) that has an r.m.s.d. of 2.22 Å,
which was successfully placed by Phaser but not by MR-REX. In both examples the decoy structure is shown in cyan and the native in green. The residues
on the decoy that were removed by MR-REX in the occupancy optimization are colored red. In (b), the arrow marks the structural errors in the middle
helix region that were not recognized by the occupancy-optimization algorithm of MR-REX.

Table 3
The correlation coefficients between the model features and the failure point of MR in terms of
TM-score for both MR-REX and Phaser.

The error bars are estimated by repeatedly and randomly withholding half of the data points, calculating
the correlations, recording the correlations and then calculating the standard deviations of the
correlations. The error is one standard deviation. The highest correlation in each column is highlighted in
bold. No. of residues is the number of residues in the asymmetric unit. Residues per Å3 is the number of
residues per Å3 of the unit cell.

MR-REX Phaser

Single variable Multi-variable Single variable Multi-variable

HETATM per residue 0.13 � 0.02 0.03 � 0.16 �0.03 � 0.02 �0.02 � 0.17
Volume of unit cell 0.23 � 0.06 0.77 � 0.14 0.05 � 0.03 0.31 � 0.11
No. of symmetry mates �0.01 � 0.05 �0.63 � 0.13 �0.05 � 0.02 �0.31 � 0.17
Residues per Å3

�0.19 � 0.01 �0.03 � 0.15 0.04 � 0.02 0.12 � 0.11
No. of reflections 0.11 � 0.05 �0.38 � 0.18 0.01 � 0.03 0.06 � 0.21
Elongation �0.38 � 0.01 �0.38 � 0.13 0.16 � 0.03 0.18 � 0.17
No. of residues 0.23 � 0.01 NA 0.37 � 0.02 NA



approximate fourfold rotational axis. For every protein decoy,

the MR solution with the highest electron-density correlation

to the native, which represents an incorrect MR candidate

solution, is found. Supplementary Fig. S4(b) presents another

example, Rho GDP-dissociation inhibitor (PDB entry 2jhs),

which has a �-sandwich fold, where the r.m.s.d. of the decoy

structure is 4.4 Å from the native. One candidate solution has

an electron-density correlation of 0.45 but with a cRMSD of

28.6 Å, while the correct solution generated but not selected

by MR-REX has an electron-density correlation of 0.24 and a

cRMSD of 0.17 Å. This protein has an approximate twofold

rotational axis, and the incorrect placement of PDB entry 2jhs

is rotated by 191� with respect to the native but superimposes

on it well. In both examples the approximate rotational axis

can create an alternative local minimum that can be confused

for the correct placement of the protein model, resulting in a

failure to solve the protein structure.

3.7. Case studies of the 3DRobot set

The test set showed complementary results for MR-REX

and Phaser. Here, we present two typical examples in which

either MR-REX or Phaser succeeds but the other fails in order

to further examine the difference in the performance of the

two methods.

Fig. 5(a) shows an example from the human Paf1 protein

(PDB entry 4m6t) in which the initial search model has an

r.m.s.d. of 7.4 Å to the native. This structure may seem to be of

too low quality to be used for MR, but most of the structure

deviations come from two loops (marked by arrows). If the 38

residues that deviate from the native by the greatest amount

are removed, leaving 139 of the 177 residues, the r.m.s.d.

decreases to 2.08 Å, indicating that the core region of the

structure has a high accuracy. MR-REX was able to recognize

and remove the residues in the two loops in the third iteration

of the occupancy-optimization simulation, which resulted in a

correct MR solution with a cRMSD of 0.47 Å and a phenix.-

autobuild Rfree of 0.27. Phaser failed to correctly place this

structure owing to the high r.m.s.d. However, when the regions

found to be bad by MR-REX were removed from the model,

Phaser was able to find the correct solution.

There are only four cases in which MR-REX failed but

Phaser succeeded according to both of the criteria cRMSD <

2 Å and Rfree < 0.4. Fig. 5(b) shows one such example, which is

from the haloalkanoic acid dehalogenase enzyme (PDB entry

2rbk). The r.m.s.d. of the decoy model is 2.2 Å to the native,

for which Phaser achieved an MR solution with a cRMSD of

0.46 Å and an Rfree of 0.28, while the MR-REX placement has

a cRMSD of 18.27 Å and an Rfree of 0.52. One reason for the

failure is that the error estimation in MR-REX missed the

major deviation of the models in the middle helix (marked by

an arrow in Fig. 5b), although it correctly recognized several

other high-variation residues. Secondly, there is an inter-

molecular clash between residue 138 of one copy and residue

261 of another copy in the best placement, which was skipped

by MR-REX owing to the clash-score penalty. Phaser caught

the solution since the clash was not severe enough for Phaser

to rule it out. Despite the clash score overpenalizing the

correct placement in this case, we found that the clash score

significantly improved the overall performance of MR-REX.

For another decoy of the same target that had an r.m.s.d. of

2.08 Å, however, MR-REX correctly placed the model with a

cRMSD of 0.56 Å and an Rfree of 0.27 (not shown).

Two of the templates from PDB entry 2il5, for which Phaser

failed and MR-REX succeeded, with r.m.s.d.s of 3.25 and

4.44 Å, were pruned according to the segments predicted to be

potentially inaccurate by MR-REX before the MR search, and

Phaser was run on the pruned models. Phaser still failed to

solve these two decoys, but succeeded when pruning the

segments determined to be inaccurate by MR-REX after the

MR search. Randy Read reported that he was able to solve

these structures using Phaser after using automated model

pruning. It is likely that an experienced user could get Phaser

to succeed on the decoys for which it failed and MR-REX

succeeded using pruning and alternative parameters. Never-

theless, the variety and complementarity provided by different

tools are often helpful for non-experienced users through

automated procedures such as online web servers.

3.8. MR results on homologous template structures

The training and testing of MR-REX have primarily been

based on full-length models created by the 3DRobot program

(Deng et al., 2016). To examine the methods in the situation of

homologous modeling, we created a second set of testing

models using LOMETS (Wu & Zhang, 2007). LOMETS is a

meta-threading method containing eight state-of-the-art

threading programs which generates template models by

matching the query sequence through the PDB library. Since

multiple templates can be detected for the same sequence, a

total of 320 template models are generated for the 38 test

proteins, i.e. 8.4 templates on average for each protein, with a

sequence identity ranging from 4 to 100%.

MR-REX and Phaser are run on each of the 320 templates,

and the templates with the worst sequence identity for which

MR is successful are recorded for each protein. Here, since the

templates are taken from experimental structures, the B factor

from the template structure is used in MR-REX when avail-

able. If we consider a solution with a cRMSD of <2 Å as being

successful, the average point of failure is a sequence identity of

49% for MR-REX and 54% for Phaser; the difference is

significant, with a p-value of 0.04. If we use the criterion of a

phenix.autobuild Rfree of <0.4 there is almost no difference

between the two programs, which have failure-point sequence

identities of 59 and 58%, respectively (Table 1).

However, this does not mean that the MR-REX and Phaser

programs should necessarily be expected to fail for templates

with sequence identities below 50–59%, as the sequence

identity of the test templates is highly discontinuous owing to

the limited number of templates. For example, for PDB entry

1r0u only the template with 100% sequence identity succeeds,

where the template with the next lowest sequence identity has

a sequence identity of 43% detected by LOMETS. If PDB

entry 1r0u had a template with a sequence identity between
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100 and 43% it might have succeeded and lowered the average

point of failure.

For all 320 template models, MR-REX generated correct

MR solutions for 125 cases, while Phaser did so in 118 cases,

according to the criterion of a cRMSD of <2 Å. In 14 cases

MR-REX correctly placed a decoy structure that Phaser was

unable to place, while the reverse occurred in seven cases; this

shows again that the two methods are complementary to each

other, where a combination of the two programs results in 132

cases in which at least one of the programs succeeded. Simi-

larly, if we use the criterion of Rfree and TM-score of the

phenix.autobuild models, MR-REX correctly placed 98

template models and Phaser did so for 100 models, where a

combination results in 108 cases in which at least one of the

programs succeeded. phenix.autobuild was not run on the

output of the iterations of MR-REX, which used the ML score.

Finally, to examine the effect of different scoring functions,

we tried to select MR solutions based on the R factor (2), the

standard deviation (3), the Pearson correlation (4) and the

maximum-likelihood (ML) function (Read, 2001b) from the

MR models generated in the MR-REX searching simulations;

this resulted in 114, 114, 112 and 123 successful cases,

respectively, for which the model has a cRMSD of <2 Å. The

result seems to suggest that the ML score is more sensitive to

the correct MR solutions. However, we only used the ML

score during the last two iterations of MR-REX, both of which

lasted 6 h. The ML score is computationally expensive. During

the 6 h of the last iteration with the ML score an average of 69

cycles were performed, whereas in the 2 h of the last iteration

without the ML score 90 cycles were performed. Thus,

MR-REX runs at about one fourth of the speed when using

the ML score compared with when it is not used. Before the

two iterations using the ML score during the MR search,

MR-REX succeeded for 123 templates. Using the ML score

during the REMC search made only a small impact, but this is

probably owing to the small number of REMC cycles that

were performed using the ML score, and if more cycles were

run with the ML score it is possible that significantly more

templates would be correctly placed.

3.9. Case studies of LOMETS set

There are three templates for which MR-REX fails

according to both cRMSD and phenix.autobuild, but Phaser

succeeds according to both criteria. The first case is PDB entry

1v05 with 96 residues, for which a LOMETS template from

PDB entry 4m9p was used. This template has an r.m.s.d. of

1.56 Å to the native structure. In this case there are incorrect

placements of the template generated by MR-REX, with no

clashes and slightly lower R factors and ML TFs than the

placement that maximizes electron-density correlation with

the native. As the structure of the model becomes less native-

like, the difference between the correct and random place-

ments becomes smaller until there are random placements

that give better scores than the correct placement. However,

the correct solution found by Phaser had a TFZ of 7.2.

Nevertheless, there is another template (PDB entry 4p3w) for

PDB entry 1v05 identified by LOMETS with an r.m.s.d. of

2.35 Å to the native, which was correctly placed by MR-REX

according to both cRMSD and phenix.autobuild.

The second template that MR-REX did not correctly place

is PDB entry 5ig5, which is a template of target 3b7c. It has

20% sequence identity to the target and an r.m.s.d. of 3.14 Å

to the native structure, where Phaser finds the correct solution

with TFZ = 5.2 without clashes. Finally, MR-REX failed to

place the template PDB entry 4ouj for target 3vwc that is 146

residues in length. The template has a sequence identity of

26% and an r.m.s.d. of 3.26 Å. The native placement could not

be selected by any of the metrics used by MR-REX, where the

final placement has a cRMSD of 20.4 Å. The TFZ of the

solution found by Phaser was 4.9, with four clashes for this

case. Overall, it seems that in these cases the correct place-

ments of the templates could not be recognized by the

MR-REX scoring function, including the ML score, although

they were generated during the REMC simulations in some

cases, while Phaser was still able to find a clear difference

between the correct and incorrect placements. This might be

owing to the anisotropy correction performed by Phaser, as

well as some difference in the way that the effect of solvent is

accounted for.

On the other hand, there are four templates for which the

default setting of Phaser did not obtain the correct solution

according to either criterion but MR-REX obtained the

correct solution according to both criteria. In three of these

cases Phaser did not output a solution. For PDB entry 2eed,

for example, which is a template of PDB entry 1v05, the

r.m.s.d. of the model to the native was 1.21 Å. Phaser found a

solution with TFZ = 8.8, but rejected it based on the large

number of clashes (seven clashes). The template was pruned

according to the results from MR-REX after the MR search

and Phaser was then rerun with the new model. The TFZ

decreased to 7.8 and the number of clashes was still too great

for Phaser to accept the solution. When sampling was made

finer by setting the rotational sampling angle to 1� and the

translational sampling distance to 0.5 Å, Phaser was finally

able to correctly place the pruned template with TFZ = 8.4 and

four clashes.

For PDB entry 4q2n, which is a template of PDB entry 3vqf,

Phaser found a solution with TFZ = 6.3 but with too many

clashes. The template was pruned according to the results from

MR-REX after the MR search, and Phaser was rerun with the

new model. The TFZ from Phaser increased slightly to 6.5, but

the clash score was still too high and no structure was output

by Phaser. When the sampling was made finer by setting the

rotational sampling angle to 1� and the translational sampling

distance to 0.5 Å Phaser correctly placed the pruned template

with TFZ = 5.6 and four clashes. The sequence identity of the

template was 22% and the r.m.s.d. to the native was 1.75 Å.

The native protein had 85 residues. MR-REX found a clear

separation between random placements and the native

placement in terms of all of the metrics except for the clash

score.

For another template of PDB entry 3vqf with an r.m.s.d.

of 2.23 Å to the target 5jxb, Phaser found a solution with
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TFZ = 6.0 but again with too many clashes. When the template

was pruned according to the MR-REX results after the MR

search, Phaser successfully placed the template. The TFZ

decreased to 4.2 and the number of clashes decreased to four,

which was accepted as a solution. Finally, Phaser output an

incorrect solution for PDB entry 1h8m, which is one of the

templates of PDB entry 3bw6. The TFZ was 5.0 and there

were four clashes. After pruning the template according to the

MR-REX results, the TFZ of the top solution increased to 5.8,

the clashes were eliminated and the top solution was correct.

Overall, among the four cases that failed with the default

Phaser program, the program succeeded in two cases after the

templates were pruned to match the MR-REX results; in the

other two cases where Phaser failed after pruning it was found

to succeed after making the sampling finer. It is likely that

more successful cases could be identified with careful tuning of

the parameters, which suggests the importance of template-

model refinement and parameter optimizations.

4. Conclusions

We have developed a novel molecular-replacement tool,

MR-REX, based on iterative replica-exchange Monte Carlo

simulations. The major advantage of the MC-based pipeline is

that it enables a cooperative six-dimensional-based translation

and rotation search, which allows simultaneous steric clash

and structural occupancy optimizations for an extensive

conformational search.

MR-REX was mainly tested on a set of 1303 structure

decoys of diverse accuracy created by 3DRobot (Deng et al.,

2016) for 38 nonredundant proteins. MR-REX can generate

correct MR solutions for 699 cases which have a crystallo-

graphic r.m.s.d. below 2 Å to the best placement obtained by

maximizing the electron-density correlation between the

model and the native protein. The average r.m.s.d. (or TM-

score) for the worst decoy from which MR-REX can generate

a correct MR placement is 4.3 Å (0.76) for the 38 proteins,

demonstrating the ability of MR-REX to place low-accuracy

structure models.

The results of MR-REX are comparable to (or slightly

favorable compared with) those of the state-of-the-art MR

tool Phaser (McCoy et al., 2007), whereas the number of

successful MR cases generated by MR-REX is 10% higher

than the latter when applied to the same benchmark set. While

the performance of the two programs is more comparable for

the easy cases where the initial structure models are close to

the native (for example an r.m.s.d. of <2 Å or a TM-score of

>0.85), the major difference is in placing the poor-quality

models. For decoys with a TM-score below 0.85 (or 0.80), for

example, the number of successful cases obtained using

MR-REX is 30% (or 49%) higher than that obtained by

Phaser. As the accuracy of structure decoys approximately

corresponds to the typical quality of distant homologous

models, the data demonstrate the potential usefulness of

MR-REX for exploiting low-resolution protein structure

predictions.

The slightly greater success of MR-REX can be partly

attributed to its introduction of a clash-scoring function into

the MR simulations. When the clash score is not used as part

of the scoring function during the MR search but is only used

in filtering the final models, MR-REX is worse than Phaser,

which also uses a clash score at the end. However, when the

clash score is used to guide the MR search the number of

successful cases is increased by 19%. In addition, MR-REX

predicts inaccurate segments of proteins and optimizes the

occupancies of these segments, which further increased the

number of successes by �7%. Finally, using the ML score

increased the number of successes by an additional 2.6%.

The median cRMSDs of MR-REX and Phaser are 1.52 and

2.53 Å, respectively, for the 1303 structure decoys. This

difference in median cRMSD indicates that MR-REX gener-

ates more medium-range MR solutions with a reasonable

cRMSD below 2 Å. Even though proteins with MR solutions

in this range may not be solved by current structure-

construction programs such as phenix.autobuild, which solved

77% of the cases correctly placed by MR-REX, it may be

beneficial when more powerful structure-construction

programs (DiMaio et al., 2011) are developed in the future.

To mimic the situation of homologous modeling, we also

tested MR-REX on a second set of 320 template models

created by the meta-threading program LOMETS (Wu &

Zhang, 2007). While the results of MR-REX are still

comparable to those of Phaser, the difference between the two

programs becomes smaller, which is probably owing to the fact

that the MR-REX parameters have mainly been trained using

the 3DRobot decoys, which are full-length structure models,

while LOMETS models are homologous models with gapped

alignments. Nevertheless, the results of the two programs

remain complementary, showing that a combination of both

can increase the yield. Based on this decoy set, we also tested

the power of different scoring functions in selecting the

correct MR solutions; the results showed that the maximum-

likelihood score outperforms the R-factor-based scores, which

is consistent with observations made by other investigators

(Read, 2001b; McCoy et al., 2005).

Despite the advancements made by MR-REX, it should be

mentioned that there are still cases where Phaser succeeded in

MR but MR-REX failed. Moreover, MR-REX takes up to 20 h

when using default parameters, which is much longer than

Phaser. Nevertheless, given the importance of protein struc-

ture determination and the overall acceptable CPU range, the

advance in performance is probably sufficient to demonstrate

the worth of the time investment of running the method.

While the method still has room for optimization, it represents

an efficient tool complementary to the current state-of-the-art

molecular-replacement methods.

Acknowledgements

We would like to thank Dr Randy Read for help in running

the Phaser program. JJV and YZ conceived and designed the

project, JJV developed the program and performed the data

analysis, and JJV and YZ wrote the paper.

research papers

Acta Cryst. (2018). D74, 606–620 Virtanen & Zhang � Molecular replacement using low-accuracy models 619



Funding information

This work was supported in part by the National Institute of

General Medical Sciences (GM-083107 and GM-116960) and

the National Science Foundation (DBI-1564756).

References

Adams, P. D. et al. (2010). Acta Cryst. D66, 213–221.
Afonine, P. V., Grosse-Kunstleve, R. W., Echols, N., Headd, J. J.,

Moriarty, N. W., Mustyakimov, M., Terwilliger, T. C., Urzhumtsev,
A., Zwart, P. H. & Adams, P. D. (2012). Acta Cryst. D68, 352–367.

Baker, E. N., Anderson, B. F., Dobbs, A. J. & Dodson, E. J. (1995).
Acta Cryst. D51, 282–289.

Bibby, J., Keegan, R. M., Mayans, O., Winn, M. D. & Rigden, D. J.
(2012). Acta Cryst. D68, 1622–1631.
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