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Abstract 

Protein–ligand docking is an important approach for virtual screening and protein function annotation. Although 
many docking methods have been developed, most require a high-resolution crystal structure of the receptor and a 
user-specified binding site to start. This information is, however, not available for the majority of unknown proteins, 
including many pharmaceutically important targets. Developing blind docking methods without predefined bind-
ing sites and working with low-resolution receptor models from protein structure prediction is thus essential. In this 
manuscript, we propose a novel Monte Carlo based method, EDock, for blind protein–ligand docking. For a given 
protein, binding sites are first predicted by sequence-profile and substructure-based comparison searches with initial 
ligand poses generated by graph matching. Next, replica-exchange Monte Carlo (REMC) simulations are performed 
for ligand conformation refinement under the guidance of a physical force field coupled with binding-site distance 
constraints. The method was tested on two large-scale datasets containing 535 protein–ligand pairs. Without specify-
ing binding pockets on the experimental receptor structures, EDock achieves on average a ligand RMSD of 2.03 Å, 
which compares favorably with state-of-the-art docking methods including DOCK6 (2.68 Å) and AutoDock Vina (3.92 
Å). When starting with predicted models from I-TASSER, EDock still generates reasonable docking models, with a suc-
cess rate 159% and 67% higher than DOCK6 and AutoDock Vina, respectively. Detailed data analyses show that the 
major advantage of EDock lies in reliable ligand binding site predictions and extensive REMC sampling, which allows 
for the implementation of multiple van der Waals weightings to accommodate different levels of steric clashes and 
cavity distortions and therefore enhances the robustness of low-resolution docking with predicted protein structures.
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Introduction
Most proteins perform their biological functions through 
interactions with other molecules in cells. Elucidating 
how proteins interact with their binding partners (or 
ligands) is a critical step towards understanding the func-
tion of proteins and/or designing new drugs to regulate 
them. In this regard, protein–ligand docking, a molecu-
lar modeling technique to predict ligand–protein binding 

conformations, can be used to help identify drug-like 
leads through virtual screening [1]. Due to the impor-
tance of docking, a number of computational approaches 
have been developed, with widely-used methods includ-
ing GOLD [2], Glide [3], AutoDock Vina [4], DOCK [5] 
and others.

Many successful docking approaches are based on a 
hierarchical conformational searching strategy guided by 
various composite energy functions. For example, Auto-
Dock Vina [4] couples an iterative search with a global 
optimizer, followed by the Broyden-Fletcher-Goldfarb-
Shanno local optimizations guided by a knowledge-based 
scoring function inspired by XSCORE [6]. In DOCK6 
[7], which is the latest version of the DOCK program, a 
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ligand is disassembled into rigid segments with the larg-
est anchor segments being oriented first to the binding 
sites by graph matching. The ligand positions are then 
sampled by growing the remaining segments till the full 
molecule is restored. The scoring function, which is used 
for pruning and minimizing the ligand conformers, con-
tains various intra-ligand and ligand-receptor interaction 
terms, as well as RMSD restraint scores.

Despite the success of these docking approaches, sev-
eral limitations can constrain their usefulness in practi-
cal applications. First, many of the most commonly used 
docking programs require the ligand binding pocket to be 
specified a priori by users. Although correct assignment 
of binding pockets can reduce the conformational search 
space and increase docking accuracy, the native bind-
ing pocket may be unknown to the users in many situa-
tions, especially when the ligand interaction and receptor 
structure are poorly characterized. Blind docking, dock-
ing a ligand without any prior knowledge of the target 
pocket, can be used to address these cases. Reflective of 
the importance of these approaches, the SAMPL (Statis-
tical Assessment of Modeling of Proteins and Ligands) [8] 
challenges have been held to promote the development 
and predictive power of such methods. Another common 
limitation of the docking programs is that the methods 
are designed only for docking on high-resolution experi-
mental receptor structures. Given that only ~ 150,000 out 
of 140 million known protein sequences in the UniProt 
database have solved structures in the PDB, most pro-
teins, including many therapeutically important targets, 
do not have experimental structures. Although most 
current docking approaches succeed on docking against 
high-resolution experimental structures, they are highly 
sensitive to errors in binding pocket conformation. 
Since model binding pockets are often warped, as the 
modeling process focuses primarily on global fold accu-
racy rather than local binding pocket fidelity, traditional 
docking approaches such as DOCK6 and Vina will likely 
produce poses far from the native pose in an attempt to 
accommodate the model’s imprecise binding pocket. The 
accuracy of such approaches when docking against low-
resolution modeled structures leaves a great deal of room 
for improvement. Thus, the development of docking 
methods applicable to low-resolution predicted protein 
structures is an important issue.

In this work, we propose a novel Monte Carlo simula-
tion method, EDock, which aims at high-quality blind 
docking on low-resolution predicted protein structures. 
Starting from a 3D structure of the protein or a protein 
model, such as those generated by I-TASSER [9], the 
structure prediction algorithm used in this manuscript, 
the ligand binding site and initial binding pocket are 
detected by a sequence-profile and local structure-based 

comparative approach. Next, replica-exchange Monte 
Carlo (REMC) simulations are performed for extensive 
docking conformation searching and structure refine-
ment. To carefully examine the strength and weakness 
of this pipeline, we tested it on two large protein–ligand 
sets collected from DUDE [10] and COACH [11], which 
demonstrate a significant advantage of EDock over other 
state-of-the-art docking methods. The on-line server and 
the standalone program of EDock, as well as all the data-
sets used in this study, are made freely available at https 
://zhang lab.ccmb.med.umich .edu/EDock /.

Methods
EDock consists of five consecutive steps: ligand-binding 
site prediction, binding pocket construction, initial dock-
ing pose generation, REMC docking simulation, and final 
model selection. A flowchart of EDock is illustrated in 
Fig. 1.

Ligand binding site prediction
Starting with a protein structure, the ligand binding 
sites are predicted by an extension of COACH [11], a 
meta-server approach to binding site prediction through 
combining prediction results from S-SITE, TM-SITE, 
COFACTOR [12], FINDSITE [13] and ConCavity [14]. 
Here, S-SITE infers binding sites from the homologous 
protein templates that are detected by sequence-profile 
comparisons from the BioLiP library [15]. TM-SITE and 
COFACTOR are also comparative binding site prediction 
approaches but with the functional templates recognized 
by substructure and global-and-local based structure 
comparisons, respectively. FINDSITE and ConCavity 
are two-third-party programs, which detect binding sites 
using threading and structural surface cavity recognition, 
respectively. In EDock, the final binding site predictions 
are selected from results of the five predictors through 
a linear support vector machine consensus model. The 
probability of a residue to be a binding residue is calcu-
lated from individual methods, which are used as the fea-
ture vectors for the residue. The consensus classification 
was trained on the 400 non-redundant training proteins. 
Finally, all the selected binding sites are clustered based 
on inter-reside distances, where the coordinate center of 
the binding residues in the largest cluster is used as the 
initial binding pocket center.

Binding pocket construction from binding site prediction
To compute the binding pocket, a cubic box with an edge 
length of 20 Å is created, which has its origin located at 
the center of the predicted binding sites. This box is rep-
resented by a set of evenly distributed grid points with a 
grid space of 2 Å. The inner shape of the binding pocket is 
then obtained through negative imaging by removing the 
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following grid points: (1) points located less than 2.5  Å 
or more than 4.5 Å from any receptor atoms; (2) single-
ton grid points with less than 3 adjacent grid points; (3) 
solvent-exposed points as described in Additional file 1: 
Figure S1; (4) points whose distance to the box center is 
larger than the ligand radius, which is defined as the dis-
tance between the ligand center and the farthest ligand 
atom. The remaining grid points obtained after these fil-
ters are used to represent the docking pocket (Fig. 1c).

In case that predicted structures are used, the local 
binding pocket of the receptor can be severely distorted. 
Therefore, EDock will slightly reduce the cutoff in filter 
(1) and collect grid points located within 2–4.5 Å of the 
receptor atoms. If less than 10 pocket grid points remain, 
the subsequent filters will be skipped to ensure the num-
ber of grid points is enough to create reasonable initial 
conformations.

Initial docking poses constructed by graph matching
Construction of the initial ligand-docking conformations 
with appropriate orientation and diversity is important 
for improving the efficiency of the subsequent dock-
ing sampling simulations. EDock uses a modified graph 
matching algorithm extended from Ewing et  al. [5] to 

Fig. 1 Flowchart of EDock for rigid-body blind ligand docking. a Input structures of protein and ligand molecules. In case a sequence is input, 
I-TASSER will be used to construct the structure model. b Profile-based binding site prediction. c Generation of the ligand-binding pocket. d 
Creation of initial conformations by graph matching. e Conformation sampling by REMC simulations. f Docking model selection

Fig. 2 An illustration of the graph matching method in EDock. b The 
ligand structure (in sticks) is to be matched with the binding pocket, 
which is represented by a set of indexed crosses. b Three illustrative 
nodes are highlighted in circles, including node1 (C:10), node2 
(CD2:6), and node3 (CE2:3). The intra-ligand distances ( dligandC−CD2 = 4.90 , 
d
ligand
C−CE2 = 6.18 , and dligandCE2−CD2 = 1.40 Å) are close to the intra-pocket 

distances ( dpocket
10−6

= 4.90 , dpocket
10−3

= 6.63 , and dpocket
3−6

= 2.00 Å), which 
results in three edges (dashed lines) being added between the nodes 
following Eq. (1). The three-edged nodes thus form a graph clique. 
Based on the atom–atom correspondence specified by the graph 
clique, the initial docking poses are generated by superimposing the 
ligand structure with the grid points of the binding pocket using the 
Kabsch RMSD rotation matrix [16]
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generate the initial docking conformations, as illustrated 
in Fig. 2.

During the graph matching procedure, a “node” of the 
graph is defined as a pair of ligand atom and grid point 
of the binding pocket. An “edge” is then added between 
two nodes (i and j) if the atom-to-atom distance within 
the ligand is close to the corresponding point-to-point 
distance in the pocket grid, i.e.,

where nedge is the order number of accepted edges (e.g., 
nedge = 1 for the first edge and 2 for the second edge etc.). 
From the matched graph, a clique, also known as a com-
plete subgraph, is defined as a set of nodes in which every 
pair of nodes is edged. Based on the alignments specified 
by the cliques, the initial docking poses can be gener-
ated by superimposing the ligand structure with the cor-
responding grid points of the binding pocket using the 
Kabsch RMSD rotation matrix [16].

Ligand–protein rigid‑body docking by Monte Carlo 
simulation
REMC protocol
The ligand–protein structure refinement in EDock is 
performed through rigid-body docking Monte Carlo 
(MC) simulations. In the classic Metropolis MC pro-
tocol [17], a Markov chain of docking conformations 
is created by randomly moving the initial ligand con-
formation. At each step, the modified conformation is 
accepted with the probability of

where �E is the energy difference between new and 
old conformations, and kT  is the temperature param-
eter. Since the acceptance rate is exponentially reduced 
with the energy difference at a given temperature, the 
simulation can be easily trapped at a local minimum. To 
improve the sampling efficiency, EDock implements the 
REMC protocol [18], in which N replicas of the docking 
system are sampled in parallel (Additional file  1: Figure 
S2). The temperature of the ith replica is set by.

where Tmin = 1 and Tmax = 60 kcal mol−1 R−1 are the low-
est and highest temperatures for the first and last repli-
cas, respectively. In every 200 local MC movements, a 
global swap movement between two contiguous replicas 
(i and j) is attempted with the acceptance probability of.

(1)
∣

∣

∣
d
ligand
i,j − d

pocket
i,j

∣

∣

∣
< 0.25× nedge

(2)plocal = min

{

1, exp

(

−

�E

kT

)}

(3)Ti = Tmin ×

(

Tmax

Tmin

)
i−1
N−1

where Ej and Ei are the energies of the jth and ith replicas. 
This movement can help to drive the simulation of low-
temperature replicas out of local energy basins by swap-
ping conformations with high-temperature replicas.

For each target, 5 independent REMC simulation runs 
are performed, where N = 20 (or 40) replicas are imple-
mented in each run for experimental (or I-TASSER pre-
dicted) receptor structures. Each replica in the REMC 
starts with a different conformation, obtained from the 
graph matching process. Here, only the conformations 
whose energy (see Eq. 5) is < 1E + 6 kcal/mol are selected, 
as this energy cutoff can result in approximately 200–300 
conformations with reasonable ligand RMSD (Additional 
file  1: Table  S1), which approximately agrees with the 
number of 200 (= 5 × 40) replicas. Meanwhile, consider-
ing the distortion of binding pockets in predicted recep-
tor models, 20 top-ranked conformations are selected 
and randomly inversed by 180° to get another 20 con-
formations. In case that the number of initial confor-
mations (M) is < 5N, 5N-M new initial conformations 
will be generated by randomly rotating the M existing 
conformations to enhance the conformational diversity. 
Additional file 1: Figure S3 presents a typical example of 
energy trajectories from 20 different replicas from the 
rabbit phosphoglucose isomerase complexed with sorb-
itol-6-phosphate (COACH ID: 1xtbA_BS01_S6P), where 
Additional file  1: Table  S2 lists the average acceptance 
rates of the swap movements; these data suggest that the 
current parameter setting can make reasonable replica-
exchanges in the EDock simulations.

Energy force field
The force field in the EDock simulation contains five 
energy terms from ligand-receptor van der Waals, Cou-
lombic electrostatic interactions, distance restraints to 
the predicted binding pocket points, distance profiles 
from template ligands and intra-ligand van der Waals:

(4)

pglobal = min

{

1, exp

(

(

Ej − Ei
)

(

1

kTj
−

1

kTi

))}

(5)

E =

∑
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∑
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[
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(

Aij
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)
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]
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where dij is the distance between the ith atom in the 
protein and the jth atom in the ligand. Aij = εR12 and 
Bij = 2εR6 are repulsion and attraction parameters, 
where R = ri + rj and ε =

√

εiεj  are related to van der 
Waals radii and well depths, respectively, the values of 
which are taken from AMBER99 [19] and listed in Addi-
tional file 1: Table S3. Out of the many widely used physi-
cal force fields used in biomolecule simulations, such as 
AMBER, CHARMM, and OPLS, we chose the AMBER 
force field, which is shown to be useful for ligand–protein 
docking by previous works [7]. The “DockPrep” module 
of Chimera is used for adding the hydrogen atoms and 
partial charges for both receptor and ligand. In the Cou-
lombic interaction term, qi and qj are the atom charges, 
which are determined using Amber’s Antechamber 
module [20]. The third term in Eq. (5) is to constrain the 
ligand molecule towards the binding pocket predicted 
by the second step of EDock (Fig. 1c), where nbind is the 
number of grid points in the pocket, and dk is the mini-
mum distance between ligand and the kth binding pocket 
point.

The fourth term in Eq. (5) is to constrain the distances 
between ligand and receptor atoms based on the origi-
nal template structures of ligand-receptor complexes 
detected in the first step of EDock (Fig. 1b). Here, BS is 
defined as all atoms on the binding sites of the receptor, 
µij is the mean reference distance calculated from tem-
plate complex structures, with σ 2

ij being the standard 
deviation of these distances (Fig. 3).

For targets with a high-resolution experimental recep-
tor structure, only the van der Waals potential and 
Coulombic electrostatic interactions are used with 
equal weights, i.e., w1 = w2 = 1 , and w3 = w4 = 0 . In 
the case that low-resolution receptor structures are 

predicted from I-TASSER, which often involves steric 
clashes, a set of five different van der Waals weights (i.e., 
w1 = 0.001, 0.004, 0.02, 0.1, 1 ) are used separately in the 
five different simulations to accommodate different lev-
els of ligand–protein clashes, where w2 = 1 , w3 = 1− w1 
and w4 = 0.01 in all of the simulations. In the Additional 
file 1: Table S4, we compare the performance of only one 
van der Waals weight and different composite sets of the 
weights and found that our current implementation of 
weights is optimal. These parameters were determined 
on an independent training dataset by minimizing the 
average ligand RMSD of the final models. Additional 
file 1: Table S5 shows the docking result at different box 
sizes and REMC swap numbers on 180 predicted struc-
ture models from the COACH dataset. Here, the box size 
was set as 20 Å as the average RMSD of the initial ligand 
pose by graph matching is minimized at this size (7.56 Å). 
The REMC swap number is set to 200, because with this 
value, we obtain the best result (7.10 Å) using a van der 
Waals weight equal to 1 and only one REMC simulation 
run.

Monte carlo movements
The conformational movements in the REMC simu-
lations involve rigid-body translations and rotations 
of the ligand molecule (Fig.  1e). At each MC step, the 
ligand is first translated along the vector 

⇀

t =

(

tx, ty, tz
)

 , 
where tx , ty , and tz are random numbers generated in 
the range of [− 0.2, 0.2]. The translated ligand is then 
rotated around a randomly oriented axis by a random 
angle in [− 3°, 3°]. To create a unit vector as the rotation 
axis, the starting point of the vector is set at the ligand 
center 

(

x0, y0, z0
)

 and the end point 
(

x1, y1, z1
)

 is ran-
domly sampled on a unit sphere centered at the ligand 
center by x1 = x0 + sin ϕ cos θ , y1 = yo + sin ϕsinθ , and 
z1 = z0 + cosϕ (see Additional file  1: Figure S4), where 
the spherical coordinate of the end point (θ,ϕ) are cal-
culated by θ = 2πr1 , ϕ = cos−1 (2r2 − 1) with r1 and 
r2 being random numbers in [0,1]. This procedure can 
ensure that the rotation vector is randomly oriented and 
evenly distributed in the rotational space, which is essen-
tial for ergodic MC sampling.

Flexible docking
EDock also implements flexible docking. The intra-ligand 
van der Waals is represented in the simulation energy by 
the fifth term in Eq. (5). It is formulated the same as the 
van der Waals between receptor and ligand atoms, where 
sij is the distance between the ith and jth atom in the 
ligand, and Cij = εR12 and Dij = 2εR6 are repulsion and 
attraction parameters related to the ligand van der Waals 
radii and well depths. The weight of this intra-ligand 
VDW term is equal to 1 for all simulations. For flexible 

Fig. 3 The ligand-receptor atomic distance profile heuristic. To 
derive the distance profile, query receptor and ligand structures are 
separately matched with the template-ligand complexes, where the 
receptor structure match is copied from the alignment generated 
by the first step of EDock, and the ligand structure match is made 
by LS-align [29]. The average distance µij is then calculated by 
µij = (1/N)

∑N
t=1

hij(t) , where hij(t) is the distance between ith 
atom of the query receptor and the ligand atom (at tth template) that 
corresponds to the jth atom of the query ligand, and N is the number 
of template complexes which have the ligand aligned with the jth 
atom of the query ligand in the LS-align alignment. In EDock, we only 
consider template ligands whose LS-score is > 0.7 with the query 
ligand. The variance is calculated as σ 2

ij = (1/N)
∑N

t=1
(hij(t)− µij)

2
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movement, all rotatable bonds are determined according 
to which bonds are single bonds in the “BOND” informa-
tion table of the MOL2 file. After the rigid body confor-
mational translation and rotation of the whole molecule, 
one rotatable bond is randomly selected as the rota-
tion axis. All atoms at the end of this rotatable bond are 
rotated by a random angle sampled within [− 180°,180°]. 
Before running the docking REMC simulation, the intra-
ligand VDW energy term will be used to justify the input 
ligand conformation. If it is larger than 100, the sin-
gle bonds of the  ligand will be randomly rotated by 500 
Monte Carlo simulation steps to obtain a reasonable ini-
tial conformation; otherwise, this step will be skipped. 
In the flexible docking REMC simulation, 40 replicas of 
the docking system are sampled with 200 global swap 
operations.

Ranking and selection of docking conformations
For each REMC run, the docking decoys are collected 
from four replicas of the lowest temperatures, with each 
decoy picked up in every 20 MC movements. Thus, 
EDock generates in total 20,000 decoy conformations 
(= 5 × 4 × 100 × 200/20) for each target, as EDock runs 
100 swaps each after 200 local MC movements. EDock 
provides two protocols for the final model selection: the 
first is to select models with the highest XSCORE, which 
is an empirical scoring function proposed to evaluate the 
binding affinity of a given protein–ligand complex struc-
ture [6]. We chose to use XSCORE instead of the EDock 
simulation energy for model selection, because previ-
ous observations have shown that the simulation energy 
is usually insensitive (or less sensitive than a third-party 
energy function) to the quality of decoy conformations 
generated based on the minimization of the simula-
tion energy (e.g. see Fig. 3 of [21]). The second protocol 
is based on a decoy clustering algorithm extended from 
SPICKER (Additional file  1: Figure S5), where models 
with the highest multiplicity, which generally correspond 
to those of the lowest free-energy [22], are selected.

As a validation experiment, in Additional file  1: 
Table S6 we list a comparison of models selected by three 
different protocols using the EDock energy, XSCORE, 
and SPICKER, where the cutoff parameters in each pro-
tocol have been optimized using the same training data-
set mentioned above. The result shows that XSCORE 
performs the best when experimental receptor struc-
tures are used, while SPICKER clustering outperforms 
others when predicted receptor models are used. This 
is intuitively understandable because the former dataset 
involves receptor structures with higher accuracy, and 
the atomic potential of XSCORE helps properly con-
sider subtle ligand–protein docking interactions. In the 

latter cases, where I-TASSER models are used (which 
have generally lower accuracy and various local dis-
tortions), model selection from the highest frequency 
of occurrence is more robust than the atomic scoring 
function of XSCORE. Therefore, the default EDock pro-
gram uses XSCORE and SPICKER, for decoys generated 
based on experimental and predicted receptor models, 
respectively.

Control methods
As a control, we compare EDock with two widely used 
docking programs: AutoDock Vina [4] and DOCK6 [7]. 
In all our benchmarks, a rigid-body docking experiment 
is performed starting from the crystal ligand conforma-
tion. Unlike the blind docking program EDock, both 
AutoDock Vina and DOCK6 require user-specified bind-
ing sites. For fair comparisons, we ran the two control 
programs using the same binding site center as predicted 
at the first step of EDock. For AutoDock Vina, a box is 
defined to restrict the conformational sampling space, 
where the coordinate center of the EDock-predicted 
binding residues is set as the box center, with a box size 
of 15 Å in all dimensions. To ensure rigid-body docking, 
we set the parameter “inactivate_all_torsions” as “true” 
to restrain the ligand’s conformational flexibility. For 
DOCK6, the target receptor and ligand were prepared 
by UCSF Chimera, as recommended by the DOCK6 user 
manual, where the parameter “flexible_ligand” is set as 
“no” to ensure that the ligand remains rigid in docking. 
All other parameters in the programs use default values.

EDock is also compared with BSP-SLIM, a ligand 
docking program previously developed in our lab [23]. 
Although both BSP-SLIM and EDock are designed for 
blind docking, the two approaches are fundamentally dif-
ferent in nearly every critical step of the process. First, 
BSP-SLIM identifies the initial binding pocket using 
global structure alignment by TM-align [24], while EDock 
detects binding pockets by substructure and sequence 
profile comparisons based on an algorithm extended 
from COACH, which has shown to have a significantly 
higher accuracy than TM-align for binding-site identi-
fication [11]. Second, BSP-SLIM uses OMEGA [25] to 
create ligand conformations, which are then superposed 
onto putative binding pockets to generate final models by 
negative image matching. One major issue in BSP-SLIM 
is that the ligand conformers are pre-created and are 
blind to specific receptor conformations. Also, although 
the negative image matching is fast, it cannot sufficiently 
explore the complex conformational space of ligand–pro-
tein interactions. To address these issues, EDock obtains 
initial docking poses by a graph matching procedure that 
can account for specific ligand shapes and binding pocket 
conformations. An extensive docking conformational 
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search is then performed by REMC simulations. Third, 
the energy function of BSP-SLIM relies mainly on ligand 
and pocket shape matching, while EDock combines mul-
tiple physics and knowledge-based terms as described in 
Eq.  (5). Finally, BSP-SLIM selects models based on the 
same chemical and shape matching score from the nega-
tive imaging, while EDock selects models from a combi-
nation of XSCORE and SPICKER clustering as described 
in Sect. “Flexible docking”. To ensure rigid-body docking 
in BSP-SLIM, we set the parameter “-maxconfs” as 1 and 
“-includeInput” as “true” in our benchmarks.

Evaluation metric of docking experiments
The docking performance is evaluated mainly by two 
metrics. The first is the root-mean-square deviation 
(RMSD) of the predicted ligand conformation relative to 
the native structure:
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 are, respectively, the 
coordinates of ith heavy atom in the predicted model and 
experimental structure of the ligand. The second metric 
is the distance between the geometric centers of the pre-
dicted and experimental structures of the ligand.

Both RMSD and center distance can be directly com-
puted from the coordinates of the ligands, if the receptor 
is from the native structure and is kept unchanged during 
simulations. In case that the receptor structure is created 
from protein structure prediction (or from the native 
but with its orientation changed in the final output), the 
receptor model will be first superimposed on the target 
receptor structure by TM-score [26]. The RMSD and 
center distance are then calculated after the ligand model 
is superimposed onto the receptor structures based on 
the same TM-score rotation matrix.

Here, it is noted that Eq.  (6) based on the default 
atom order can result in artificially high RMSD values 
for ligands with symmetric structures (such as a ben-
zene ring). We use the DockRMSD program, which was 
designed to identify the minimum RMSD values by a 
quick graph isomorphism searching algorithm [27], to 
evaluate the symmetry-corrected RMSD between the 
docking pose and native ligand conformation.

Results
Datasets
Two datasets are used for benchmarking the EDock 
method. The first is DUDE [10], which contains 102 
targets with a diverse family distribution, including 26 
kinases, 15 proteases, 11 nuclear receptors, 5 GPCRs, 2 
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ion channels, 2 cytochrome P450s, 36 other enzymes, 
and 5 miscellaneous proteins. For each target in DUDE, 
only the active compound is used in the docking tests, 
while decoy compounds are skipped as they do not pos-
sess a native pose to which the predicted conformation 
can be compared. The second dataset is taken from 
COACH [11], which contains 500 non-redundant pro-
teins that harbor 812 ligands (410 natural ligand, 238 
drug-like ligand and 164 metal ions). Since EDock is 
designed for protein ligand docking, we discard targets 
from this dataset possessing metal ions and large ligands 
with > 50 heavy atoms and > 20 rotatable bonds, which 
results in a final count of 433 targets. While DUDE is a 
widely used dataset for virtual screening and contains a 
wide range of protein types, the ligand types and rotata-
ble bonds in the COACH dataset are more diverse (Addi-
tional file  1: Figure S6). Since the performance of blind 
docking approaches relies on both ligand binding site 
prediction and receptor structural accuracy, the adoption 
of the two datasets can provide complementary informa-
tion in the testing results of the docking methods. The 
datasets are downloadable at https ://zhang lab.ccmb.med.
umich .edu/EDock /.

Constrained ligand docking on holo‑protein structures
EDock constructs ligand docking models by refining the 
conformations from graph matching. To examine the 
efficiency and the necessity of the Monte Carlo refine-
ment process, we first tested the ligand docking approach 
on the easiest cases, which use experimental holo-protein 
receptor structures with binding sites derived from the 
center of each experimental ligand position. This simpli-
fication helps to rule out the impact of incorrect binding 
site and receptor structure prediction in the experiment.

Table 1 lists a summary of EDock performance on both 
the DUDE and COACH datasets. It is shown that the 
graph matching algorithm can generate reasonable initial 
conformations with an average RMSD of 4.17 (or 3.90) 
Å relative to the experimental structure in the DUDE 
(or COACH) dataset. The REMC simulations have sig-
nificantly improved the ligand docking models, with the 
average RMSD reduced by 2.89 and 1.99 Å on the DUDE 
and COACH proteins, respectively. In fact, this average 
RMSD decrease may be underestimated because EDock 
failed to perform the docking on a few cases from each 
dataset, resulting in an RMSD > 8 Å for these cases, which 
in turn, increases the average RMSD values. If we con-
sider the median RMSD, the REMC improves the initial 
docking conformation by nearly 3 Å for both datasets. 
Accordingly, EDock achieves an RMSD < 1  Å in 80.2% 
(or 66.7%) of the cases, while the initial graph match-
ing does so only in 5.9% (or 8.2%) of cases in the DUDE 
(or COACH) dataset. The p-value of the average RMSD 

https://zhanglab.ccmb.med.umich.edu/EDock/
https://zhanglab.ccmb.med.umich.edu/EDock/
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difference, using a paired Student’s t-test, is 8.1E−15 and 
1.7E−39 for the DUDE and COACH datasets, respec-
tively, which indicates that the improvements provided 
by the REMC simulation are statistically significant in 
both datasets.

Interestingly, the EDock models have a slightly higher 
RMSD in the COACH dataset than that in the DUDE 
dataset, although the RMSD of the initial conformations 
in the former is lower. This is probably because binding 
pockets of the  COACH dataset are generally larger and 
easier to predict, resulting in better initial poses, while 
the ligands in DUDE have less structural variation, and 
therefore, their conformations are easier to correct 
through the REMC simulations. To examine this hypoth-
esis, we present in Additional file 1: Figure S7 the histo-
gram distribution of the number of binding-pocket grid 
points in the DUDE and COACH datasets. It is shown 
that the proteins in the COACH dataset have on aver-
age a much larger pocket size (42.86 vs 18.66) with much 
higher variability (standard deviation = 24.81 vs 9.89) 
than the proteins in DUDE; this data is consistent with 
the above observations on EDock performance.

As a control, we also list the performance of two widely 
used docking methods, AutoDock Vina and DOCK6. 
As it is observed, EDock outperforms both methods 
in all the test values, except for the DUDE dataset in 
which AutoDock Vina has a slightly lower center dis-
tance between model and native due to several outliers 
in the EDock models. However, the median center dis-
tance is lower in EDock than Vina in the same category. 
Overall, the average RMSD of EDock is 1.79 Å for the 
530 (= 101 + 429) test targets, which is 0.67 Å lower than 
AutoDock Vina and 0.68 Å than DOCK6; the p-value 
from a paired Student’s t-test is 5.5E−07 and 4.6E−08, 
respectively, showing that the differences between EDock 
and the control methods are statistically significant.

In Fig.  4, we present a head-to-head comparison of 
EDock with the two control methods on the 530 com-
mon targets in terms of ligand RMSDs. Overall, EDock 
has a lower RMSD than AutoDock Vina (or DOCK6) in 
341 (or 373) cases, while AutoDock Vina (or DOCK6) 
does so in 189 (or 157) cases. The average heavy atoms 
and rotatable bonds are 26.28 (27.49) and 8.89 (9.18) for 
the cases which EDock is better than AutoDock Vina 
(or DOCK6), while the cases that AutoDock Vina (or 

Table 1 Summary of docking results on holo-protein structures with known ligand binding sites

Since 4 (and 1) of 535 test targets failed in Vina (and DOCK6), only 530 targets (101 from DUDE and 429 from COACH), on which all programs have a result, are shown. 
“Initial” refers to initial poses from graph matching with the highest XSCORE; “Ave” and “Med” represents the average and median values, respectively. The best 
performance is highlighted in italic font in each category

Datasets Methods Ligand RMSD (Å) Center distance (Å) Ave 
RMSD < 1.0 
ÅAve Med Ave Med

DUDE (101) Initial 4.17 3.72 1.97 1.55 7

EDock 1.28 0.36 0.74 0.26 81

Vina 1.38 0.52 0.67 0.35 80

DOCK6 1.41 0.53 0.90 0.32 81

COACH (429) Initial 3.90 3.13 1.61 1.26 35

EDock 1.91 0.48 0.99 0.35 286

Vina 2.72 0.78 1.36 0.56 228

DOCK6 2.72 1.46 1.14 0.77 171

Fig. 4 RMSD of ligand models by different methods on the 
holo-protein structures with known ligand binding sites. a EDock 
vs DOCK6 on DUDE dataset; b EDock vs AutoDock Vina on DUDE 
dataset; c EDock vs DOCK6 on COACH dataset; d EDock vs AutoDock 
Vina on COACH dataset
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DOCK6) outperforms EDock have similar averages at 
26.53 (23.73) and 8.53 (7.78), respectively. Therefore, 
the superiority of EDock is not strongly correlated with 
either of these factors. When counting the number of 
good models with an RMSD < 1 Å, EDock has 367 cases 
with a good model, while AutoDock Vina and DOCK6 do 
so in 308 and 252 cases, respectively. These data demon-
strate again the advantage of EDock in ligand docking on 
easy protein targets.

Blind docking with predicted binding pockets
EDock generates reasonable docking models when binding 
site distance error is < 8 Å
In contrast to many approaches which require pre-
assigned binding locations, EDock is designed to perform 
blind docking with initial ligand-binding sites generated 
from sequence-profile and substructure-based searching 
(Sect.  “Ligand binding site prediction”). To evaluate the 
quality of the binding site (BS) prediction, we define BS 
error as the distance between the center of the predicted 
binding site and the center of the binding pocket in the 
experimental structure.

Figure 5 presents the dependence of the RMSD of the 
final models by EDock on the BS errors in both datasets. 
From a qualitative view of the data points, most of the 
targets tend to have a reasonable docking model if the BS 
error is below 8 Å, and vice versa (see the vertical dashed-
line in the figure). In fact, the average RMSD of the dock-
ing models for the targets with BS error < 8  Å is much 
lower than that with BS error > 8  Å (2.17 vs 18.20  Å), 
which corresponds to a significant p-value of 6.45E−30 
from an unpaired Student’s t-test. Therefore, we con-
sider that the prediction of binding sites is acceptable if 
the distance error is below 8 Å. Overall, there are 76 and 
315 targets whose BS error is < 8  Å for the DUDE and 
COACH datasets, respectively. For these targets, EDock 
achieves successful docking with a ligand RMSD < 2 Å in 

64 and 221 cases in the two datasets, respectively, which 
corresponds to an overall 73% success rate.

Even with incorrect BS predictions with a BS 
error > 8 Å, EDock still manages to create correct ligand-
docking models with an RMSD < 2  Å for several cases. 
Figure  6 presents an example from the hevamine A 
complexed with allosamidin (COACH ID: 1lloA_BS01_
UUU). For this target, the initial binding pocket pre-
diction has a BS error of 8.21 Å, where graph matching 
detects multiple initial conformations with the best 
having an RMSD = 2.12  Å. After the REMC docking 
refinement, EDock creates the first model of the high-
est XSCORE with an RMSD = 0.27 Å to the native. This 
success can be mainly attributed to the extensive docking 
simulations which creates enough near-native conforma-
tions, where the XSCORE picks up one of the best decoys 
from the docking ensemble. This example also demon-
strates the ability of the extended graph matching algo-
rithm to identify acceptable initial docking pose, where 
EDock was able to draw the initial ligand conformation 
closer to the native, even without correctly predicted 
binding sites.

EDock outperforms control methods with predicted BS
In Table 2, we list a summary of the EDock models for the 
391 cases in which COACH generates acceptable binding 
site predictions with a BS error < 8 Å. It achieves an aver-
age RMSD of 1.45  Å for the DUDE dataset and 2.17  Å 
for the COACH dataset, which are largely comparable 
to the results based on the native binding pocket (see 
Table 1). Here, despite the use of the BS filter, the aver-
age BS error is quite high (= 3.90 Å), which results in a 
high ligand RMSD of the initial docking pose (= 4.65 Å). 
The high accuracy of the final docking model highlights 
the ability of the REMC simulation of EDock to refine 

Fig. 5   RMSD of the top ranked docking model by EDock versus the 
binding site distance error by COACH on the DUDE (a) and COACH 
(b) datasets

Fig. 6 Example of successful docking on 1lloA_BS01_UUU. The 
center of the binding site prediction (yellow) is 8.21 Å away from the 
center of the native ligand (red), where graph matching detects a 
pose (cyan) with an RMSD of 2.12 Å. EDock constructs the final model 
(green) with an RMSD of 0.27 Å through REMC refinement
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docking conformations when faced with low accuracy BS 
predictions.

As a control, Table  2 also lists the results from Auto-
Dock Vina and DOCK6. The result shows that the mod-
els from EDock have a lower RMSD and center distance 
than those from both DOCK6 and AutoDock Vina. 
The p-value from a paired Student’s t-test is 5.95E−06 
between EDock and DOCK6 and 6.48E−21 between 
EDock and AutoDock Vina, indicating the differences are 
statistically significant.

In Fig. 7, we present a scatterplot comparison of EDock 
and the two control methods on the 391 common tar-
gets in terms of the RMSD of the top model ranked by 
XSCORE. Overall, there are 285 and 284 cases in which 
EDock created a model with a lower RMSD than Vina 
and DOCK6, while Vina and DOCK6 outperforms 
EDock only in 106 and 107 cases, respectively. If we 
consider a model of a ligand with an RMSD < 2 Å as suc-
cessful, EDock succeeds in 285 cases, while DOCK6 and 
AutoDock Vina do so in 247 and 175 cases, respectively 
(Fig. 7).

Here, since AutoDock Vina has an option to specify the 
search space of docking, as a test of the ability of Vina to 
perform blind docking we ran the AutoDock Vina pro-
gram using the whole receptor as its search space. As 
shown in Table  2, the models generated by Vina blind 
docking (represented as “Vinablind”) have a much higher 
RMSD (6.94  Å) than those generated by the program 
starting with the EDock predicted binding pockets 
(“Vina”, 3.92 Å). The number of successful cases with 
RMSD < 2 Å by  Vinablind (141) is also lower than that of 
Vina (175). These data suggest that the EDock binding 
site predictions can also be used to assist other blind 
docking programs.

In addition to EDock, BSP-SLIM [23] is another blind 
docking program which derives binding pockets from 
global structure alignments by TM-align. Additional 
file  1: Table  S7 (upper panel) lists a comparison of the 
blind docking results by EDock and BSP-SLIM on the 
experimental receptor structures. Since BSP-SLIM failed 
on some targets, the table only lists the results for the 
248 test targets for which BSP-SLIM could generate a 
final model. Since no BS error filter is used here, the 
average RMSD of the EDock models (6.49 Å) is consid-
erably higher than that in Table 2 (1.45 Å) due to a few 

Table 2 Summary of docking results on the targets with binding site error < 8 Å

Since 4 (and 8) test targets failed in Vina (and DOCK6), only 391 targets (76 from DUDE and 315 from COACH), on which all programs have a result, are shown. “Ave” 
and “Med” represent the average and median values respectively. “EDock”, “DOCK6” and “Vina” represent the results starting with the same binding sites predicted by 
COACH, while “Vinablind” refers to the blind docking result of AutoDock Vina with searching the whole receptor space. The best performance is highlighted in italic font 
in each category

Datasets Methods RMSD (Å) Center distance (Å) Ave 
RMSD < 2.0 
ÅAve Med Ave Med

DUDE (76) EDock 1.45 0.33 0.88 0.23 64

DOCK6 2.03 0.54 1.17 0.37 57

Vina 3.92 2.73 2.05 1.13 36

Vinablind 5.15 1.15 3.50 0.92 40

COACH (315) EDock 2.17 0.43 1.21 0.33 221

DOCK6 2.84 0.90 1.56 0.51 190

Vina 3.92 2.96 1.92 1.10 139

Vinablind 7.37 6.07 5.65 2.83 101

Fig. 7 RMSD comparison of the docking models on the targets with 
a BS distance error below 8 Å. (a, b) DUDE dataset; (c, d) COACH 
dataset
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high-RMSD outliers for which the binding pocket predic-
tion was completely wrong. However, the median RMSD, 
which is a more meaningful measure here, is equal to 1.16 
Å for EDock, which is 5.2 Å lower than that of BSP-SLIM 
(6.36  Å), showing the significant advantage of EDock 
over BSP-SLIM. In addition to the different binding 
pocket prediction strategies, the different performance in 
Additional file 1: Table S7 can be mainly attributed to the 
extensive REMC refinement simulations by EDock, com-
pared to the fast but simplified negative image superposi-
tion performed by BSP-SLIM.

Blind docking on predicted protein structures
As most proteins in the UniProt database do not have 
experimental structures solved in the PDB, it is impor-
tant to examine the ability of blind docking methods on 
low-resolution structures derived from protein structure 
prediction. This represents the most challenging case 
since the receptor structures are typically modeled in 
apo-form, where the local binding pocket conformation 
can be severely distorted, in addition to other possible 
errors in the global fold.

Overall results
In Table  3, we present a summary of the ligand dock-
ing results of EDock based on the receptor models pre-
dicted by I-TASSER [9]. Here, when running I-TASSER, 
all homologous templates with a sequence identity > 30% 
to the query have been excluded. As a result, the aver-
age TM-scores of the receptor models are 0.812 and 
0.808, respectively, for the DUDE and COACH datasets, 
where there are 99 and 417 out of 102 and 433 cases in 
the datasets with a TM-score > 0.5. A more detailed TM-
score distribution is displayed in Additional file 1: Figure 
S8. These results demonstrate that I-TASSER can create 
models of correct fold for most protein receptors even 
without using close homologous templates. Neverthe-
less, there are still a considerable number of cases where 

I-TASSER failed to generate correct folds. Due to these 
I-TASSER modeling errors, the accuracy of binding site 
predictions is also lower than when experimental recep-
tor structures were used. Since docking programs will fail 
in most cases if the receptor structure or binding site pre-
diction is wrong, Table 3 only focuses on the cases when 
the BS prediction error below 8 Å and the TM-score is 
larger than 0.8, in order to provide a meaningful test of 
the docking methods. Also, there are 6 (and 34) targets 
for which AutoDock Vina (and DOCK6) failed to gener-
ate a final model, due to the distortion of the local pocket 
structures; these cases are also skipped in Table 3.

The data shows that the overall docking performance of 
EDock is significantly impacted by low-resolution recep-
tor structure prediction. The average RMSD is nearly 
three times larger than that achieved by using the experi-
mental holo-receptor structures, as compared to the 
data in Table  2. Nevertheless, EDock still outperforms 
DOCK6 and AutoDock Vina, with average ligand RMSDs 
reduced by 1.55 (2.43) and 1.44 (1.56)  Å, respectively, 
in the DUDE (COACH) dataset. The overall improve-
ment on the combined dataset is 2.22 and 1.53  Å rela-
tive to DOCK6 and AutoDock Vina, which corresponds 
to a p-value of 8.40E−20 and 3.20E−13, respectively, 
by a paired Student’s t-test, showing that the difference 
is statistically significant when using EDock-predicted 
binding pockets. If the EDock-predicted binding pocket 
is not used, the ligand RMSD of  Vinablind increases to 
10.48 Å, which is significantly higher than both EDock 
(p-value = 1.90E−29) and AutoDock Vina with COACH 
prediction (p-value = 8.28E−19). Additional file  1: 
Table S7 (lower panel) also lists the blind docking results 
of EDock compared to BSP-SLIM on the 248 common 
targets, where the average (and median) RMSD of EDock 
is 1.3 (1.2) Å lower than that of BSP-SLIM; this data is 
consistent with the blind docking results using experi-
mental receptor structures.

Table 3 Summary of  docking results on  237 targets that  have receptor models from  I-TASSER with  TM-score > 0.8 
and binding site error < 8 Å

“Ave” and “Med” represent the average and median values respectively. The best performance is highlighted in italic font in each category

Dataset Method RMSD (Å) Center distance (Å) Ave 
RMSD < 5.0 
ÅAve Med Ave Med

DUDE (57) EDock 5.47 5.79 2.95 2.85 24

DOCK6 7.02 7.09 4.03 3.54 10

Vina 6.91 6.96 3.41 3.16 9

COACH (180) EDock 4.62 4.28 2.70 2.11 100

DOCK6 7.05 6.89 4.43 4.24 40

Vina 6.18 6.25 3.53 3.31 59
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Additional file  1: Figure S9 presents a head-to-head 
comparison of EDock with the two control methods 
(DOCK6 and Vina) in terms of ligand RMSD based on 
I-TASSER receptor models with EDock-predicted bind-
ing pockets. Overall, EDock has a lower RMSD than Vina 
(DOCK6) in 162 (184) out of the 237 cases, while Vina 
(DOCK6) does so in 75 (53) cases, which confirms the 
superior performance of EDock. Figure 8 shows a repre-
sentative example from the 7, 8-diaminopelargonic acid 
synthase bound with 7-keto-8-aminopelargonic acid 
(COACH ID: 3du4A_BS01_PLP), where EDock achieves 
a reasonable docking RMSD (0.52 Å), compared to 6.46 Å 
by AutoDock Vina and 8.16 Å by DOCK6 respectively.

Ability to accommodate local clashes inside binding pocket
One obstacle in low-resolution docking on predicted 
receptor structures is the distortion of the binding 
pocket, which can result in steric clashes between ligand 
and receptor atoms. Sometimes, the initial conforma-
tions obtained from graph matching can be incorrect or 
even oriented in the opposite direction from the native 
ligand due to distortion and the reduced size of the bind-
ing cavity. Since the degrees of pocket distortion and 
steric clashes are different for different targets, EDock 
adopts a strategy specifically designed for the cases with 
predicted receptor structures. First, it lowers the grid 
point cutoff to increase the variation of binding pocket 
creations (Sect. “Binding pocket construction from bind-
ing site prediction”). Second, EDock selects the top  20 
docking poses and flips the orientation of each pose to 
enhance the diversity of initial binding conformations. 
Third, it couples the energy force field with the binding 
distance restraints in Eq. (5) and adopts a composite set 

of van der Waals weights (i.e., w1 = 0.001, 0.004, 0.02, 0.1, 
and 1), which correspond to the variable binding con-
straint weights of ( w3 = 0.999, 0.996, 0.98, 0.9, 0) in five 
parallel REMC simulation runs so that the simulations 
can accommodate different levels of pocket distortion 
and steric clashes.

In Fig. 9, we show an example which demonstrates the 
effect of the approach with variable van der Waals and 

Fig. 8 The illustration of ligand docking from 3du4A_BS01_PLP based on I-TASSER predicted models. The ligand poses by EDock (yellow), AutoDock 
Vina (magenta), and DOCK6 (blue) have an RMSD of 0.52, 6.46, and 8.16 Å from native (red), respectively. The background shows the superposition 
of the I-TASSER model (pink) on the native structure (cyan) of the receptor structure with a TM-score = 0.956

Fig. 9 The docking results under different van der Waals potential 
and binding pocket distance restraint weights for 1mkaA_BS02_DAC. 
The I-TASSER model (cyan) has an extra steric bump inside the 
binding cavity, compared to the native receptor structure (pink) in 
the background. The upper-right inset shows the docking poses by 
EDock (yellow), AutoDock Vina (magenta), and DOCK6 (blue) with an 
RMSD of 3.82Å, 8.03Å, and 6.74 Å from the native ligand pose (red), 
respectively. The lower-right compares the models by EDock with 
the composite weights (yellow), and two uniform weights of w3 = 1 
(green, RMSD = 9.26 Å) and 0 (orange, RMSD 8.85 Å), respectively
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pocket distance restraint weights. This is a target from 
the beta-hydroxydecanoyl thiol ester dehydrase com-
plexed with unsaturated fatty acids (COACH ID: 1mkaA_
BS02_DAC). The I-TASSER model has an acceptable 
global fold with TM-score = 0.853 but has severe atomic 
clashes with the native ligand in the pocket region. EDock 
has five different van der Waals weights, where only the 
model generated from the simulations with composite 
weight sets resulted in a correct ligand position with an 
RMSD = 3.82 Å, which compares favorably to the models 
from AutoDock Vina (8.03Å) and DOCK6 (6.74 Å).

Docking performance is more sensitive to the quality of local 
pocket than global fold
When analyzing the quality of protein structure models 
for docking, it is not enough to consider only metrics for 
overall protein topology such as TM-score [26]. Pocket 
structure quality is more relevant because docking con-
formations are sampled only near the pocket. To have a 
quantitative assessment of the local quality of the binding 
pocket, we define the binding pocket as the set of amino 
acid residues which have at least one heavy atom whose 
distance to the closest ligand heavy atom is below the 
sum of the van der Waals radii of the two involved atoms, 
plus a tolerance of 0.5 Å [28]. The pocket RMSD is cal-
culated by directly superimposing the binding pockets of 
the receptor structures by the TM-score program. Addi-
tional file 1: Figure S10 shows the distribution of pocket 
RMSD for the DUDE and COACH datasets separately. 
It is shown that EDock was able to predict reasonable 
binding pocket structures, with a large portion of cases 
having a pocket RMSD < 2 Å, despite the variation in the 
global fold of the receptor structural models.

In Additional file  1: Table  S8, we re-evaluate the per-
formance of the docking methods on the targets whose 
binding-site distance error are < 8 Å and pocket RMSD 
is < 2 Å. Compared to the results in Table  3, the dock-
ing models by all three programs have better quality in 
Additional file  1: Table  S8, due to the improved quality 
of the binding pocket, where the average pocket RMSD 
was reduced from 1.74 to 1.04 Å due to the filter. Simi-
larly, the EDock models have lower RMSDs and center 
distances compared to the control methods, especially 
for the predicted structures of the COACH dataset. Here, 
the integration of the EDock binding site predictions 
helped to reduce the average ligand RMSD of AutoDock 
Vina from 10.41 (9.79) Å to 6.03 (6.86) Å and increase the 
number of cases with a center distance < 4 Å by 51 (15) 
in the COACH (DUDE) dataset, compared to the origi-
nal AutoDock Vina without using binding site predic-
tions. This data demonstrates again the usefulness of the 
COACH binding site predictions to guide blind docking 
experiments with low-resolution receptor structures.

In Fig.  10, we show an example from the P38 kinase 
domain in complex with a Monocyclic Pyrazolone Inhib-
itor (COACH ID: 1ywrA_BS01_LI9). The global recep-
tor structure by I-TASSER has a relatively low TM-score 
(= 0.767) but a high-quality binding pocket with a pocket 
RMSD of 0.86  Å, which leads to EDock’s top ranked 
docking model possessing a ligand RMSD of 1.40 Å. The 

Fig. 10 The docking performance on the P38 kinase domain bound 
with a Monocyclic Pyrazolone Inhibitor (COACH ID: 1ywrA_BS01_LI9). 
The I-TASSER receptor model has a relatively low TM-score (= 0.767, 
pink cartoon, left panel) but with a good binding cavity (pocket 
RMSD = 0.86 Å, upper-right panel). This results in a low ligand RMSD 
by EDock (1.40 Å, yellow), which compares favorably to AutoDock 
Vina (6.50 Å, magenta) and DOCK6 (7.82 Å, blue) as shown in the 
lower-left panel

Fig. 11 The success rates of different methods on DUDE and COACH 
datasets starting from predicted binding pockets. Here, a case is 
considered successful if the ligand RMSD is below 2 (or 5) Å with the 
receptor structure from experiment (or I-TASSER prediction)
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result indicates that while a high TM-score I-TASSER 
model is helpful to predict binding sites using COACH, 
the local pocket structure quality is more relevant to the 
final docking performance.

Finally, we summarize in Fig.  11 the overall success 
rate of the three docking methods on the two datasets 
of DUDE and COACH with different receptor structure 
sources, where a docking result is considered successful 
if the ligand RMSD is below 2 (or 5) Å for cases when the 
native structure (or I-TASSER predicted model) is used. 
It is shown that all the docking programs achieved a 
higher success rate in the DUDE dataset when the experi-
mental receptor structure is used (0.84, 0.47, and 0.75 
versus 0.70, 0.44, and 0.60 by EDock, Vina and DOCK6, 
respectively), which is likely due to the relatively con-
served binding pockets and rigid ligand structures with 
a relatively lower number of rotatable bonds in the data-
set (Additional file 1: Figure S6). Somewhat unexpectedly, 
the success rates are all lower in the DUDE dataset than 
those in the COACH set if I-TASSER predicted models 
are used (0.41, 0.14 and 0.14 versus 0.59, 0.38 and 0.24 
by EDock, Vina and DOCK6, respectively). This is, how-
ever, understandable considering the fact that the bind-
ing pockets in the COACH dataset have a lower pocket 
RMSD (= 0.98 Å) than those in the DUDE set (1.26 Å), 
even though the COACH dataset has a slightly lower 
TM-score (0.808) than the DUDE set (0.812). This data 
demonstrates again that the local quality of the binding 
pocket is more relevant to the final docking performance 
than the global topology of the receptor models.

Flexible docking comparison
We also examine the ability of EDock flexible dock-
ing against other control methods, AutoDock Vina and 
DOCK6. In the REMC simulation, the intra-ligand van 
der Waals potential is added into the  simulation energy 
function to evaluate ligand conformation changes. 

Random rotation of a single bond is implemented along-
side rigid-body translations and rotations of the ligand 
molecule. Two ways of initializing the input ligand struc-
tures are used for benchmarking the EDock method, 
which both are applied to the protein–ligand pairs of the 
COACH dataset. One is that the crystal structure ligand 
pose is used for input. The other is when each single bond 
is randomly rotated to build a random ligand pose for 
input. We also compare the blind flexible docking perfor-
mance based on holo-protein structures and I-TASSER 
predicted structures, which contain 315 and 180 targets, 
respectively, and whose binding sites are the same as with 
rigid body docking.

In Table 4, we present a summary of the flexible dock-
ing results of EDock compared with AutoDock Vina. For 
holo-protein structures, the average and median RMSD 
of EDock is slightly lower than AutoDock Vina for crystal 
and random ligand input. However, AutoDock Vina has 
a lower center distance between model and native than 
EDock. There are 159 (or 157) cases whose EDock RMSD 
were lower than Vina for crystal (or random) ligand 
input, respectively. For the predicted structures, EDock 
significantly outperforms Vina. The average and median 
RMSD of EDock is 4.85 Å (or 5.09 Å) for crystal (or ran-
dom) ligand input, which is 1.39 Å (or 1.38 Å) lower 
than Vina. There are 118 (or 123) cases in which EDock 
was better than Vina for crystal (or random) ligand 
input, which corresponds to a p-value of 1.11E−06 and 
7.75E−08 using a paired Student’s t-test, respectively.

EDock is also compared with DOCK6, whose result is 
shown in Additional file  1: Table  S9. There are 91 (and 
162) cases out of 315 test targets for crystal (and random) 
ligand inputs for holo-protein structures, and 27 (and 
70) out of 180 targets for predicted structures in which 
DOCK6 failed to produce a valid docking result. Addi-
tional file 1: Table S9 shows the flexible docking perfor-
mance only for the targets for which DOCK6 produced 

Table 4 Summary of flexible docking results of EDock compared with Vina

“Crystal” and “Random” represent the real ligand conformation and random rotatable conformation, respectively. The best performance is highlighted in italic font in 
each category

Receptor structure Input ligand 
structure

Method RMSD (Å) Center distance (Å) Average 
RMSD < 2.0 (or 
5.0 Å)Ave Med Ave Med

Holo-protein structure (315) Crystal EDock 4.75 4.29 2.44 1.59 96

Vina 4.79 4.69 2.14 1.55 74

Holo-protein structure (315) Random EDock 4.81 4.59 2.51 1.83 74

Vina 4.84 4.81 2.17 1.55 63

Predicted structure (180) Crystal EDock 4.85 4.42 2.72 2.11 101

Vina 6.24 6.37 3.48 3.19 56

Predicted structure (180) Random EDock 5.09 4.99 2.77 2.27 90

Vina 6.47 6.45 3.52 3.07 40
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a valid result. Although the results indicate that DOCK6 
has better docking performance (RMSD = 4.49 and 4.23 
Å) for crystal and random ligand input on holo-proteins, 
this is likely because the “anchor and grow” method of 
DOCK6 cannot obtain docking poses in many cases, an 
issue which is solved in EDock. However, when docking 
on predicted models, the average RMSD of EDock was 
2.21 (and 2.59) Å lower than DOCK6 for for crystal (and 
random) ligand input, which results in 111 (and 73) tar-
gets for which EDock outperforms DOCK6.

The conserved rate of native binding sites for low‑resolution 
structures
In the majority of this manuscript, we have compared 
the docking RMSD between the predicted pose and 
native pose to evaluate EDock, AutoDock Vina and 
DOCK6 for low-resolution structures. However, this 
metric may not be completely reasonable for evaluat-
ing the performance of docking on predicted models, 
as the binding site is usually somewhat warped, and the 
native pose is no longer reasonable as a “ground truth” 
(e.g. the native ligand pose sterically clashes with the 
residues of the binding pocket). Here we re-evaluate the 
number of conserved native binding contacts between 
ligand and protein for predicted structures. According 
to the docking pose on I-TASSER models, the binding 
site residues predicted to be in contact with the ligand 
can be obtained through determining the set of amino 
acid residues with an inter-atom distance to the closest 
ligand heavy atom below the sum of the van der Waals 
radii of the two involved atoms, plus a tolerance of 0.5 Å. 
Then, the predicted residues in contact with the ligand 
are compared with the native binding site. The precision 
(TP/(TP + FP)) , recall (TP/(TP + FN )) and F1 score 
(2/(1/precision+ 1/recall)) are used to evaluate the con-
sistency with native binding, where TP, FP and FN mean 
the number of true positive, false positive and false nega-
tive contacts relative to the native protein–ligand com-
plex. In Additional file  1: Table  S10, the F1 score and 
recall of EDock are 5.6% (or 13.6%) and 25.6% (or 30.8%) 
higher than AutoDock Vina (or DOCK6) for rigid body 
docking, while the precision is 8.6% (or 3.1%) lower than 
AutoDock Vina (or DOCK6). For flexible docking, we 
only compare with AutoDock Vina because of the cases 
failed by DOCK6. The F1 score and recall of EDock is 
8.0% (5.5%) and 22.3% (20.4%) higher than AutoDock 
Vina, but the precision is 5.4% (6.8%) lower than Auto-
Dock Vina for crystal (random) ligand input. This is 
because AutoDock Vina will dock the ligand in a site 
on the protein less amenable to binding than the native 
binding site in order to avoid the steric clashing. The fact 
that the resulting binding site is often less of a “pocket” 
than the original binding site makes the total number of 

binding contacts ( TP + FP ) smaller than native number 
( TP + FN  ), so the precision is higher than other methods. 
The comparison results in Additional file  1: Table  S10 
and Table  3 indicate EDock not only can predict more 
accurate docking positions but also can obtain more near 
native docking poses.

Discussion
We developed a new method, EDock, for blind pro-
tein–ligand docking through replica-exchange Monte 
Carlo simulations. Starting from the structure of a pro-
tein receptor, the binding sites are first predicted through 
sequence-profile and local-structure based threading, 
where putative binding pockets are created by negative 
imaging of the predicted binding site. Next, a modified 
graph matching approach is extended to construct initial 
ligand poses, which are further refined by REMC simu-
lations under a composite force field constrained by the 
binding site predictions and template ligand distance 
profiles.

The method was tested on two large-scale datasets 
from DUDE and COACH [10, 11], where EDock gen-
erated correct docking conformations with a ligand 
RMSD < 2 Å in 84% and 70% of the cases, respectively, 
based on the experimental receptor structures but using 
predicted binding sites. This compares favorably with 
widely used docking tools, including AutoDock Vina 
(with a success rate of 47% and 44%) and DOCK6 (75% 
and 60%), which start with the same binding site predic-
tions. The results also showed the usefulness of profile-
based binding site predictions, which can help improve 
other docking programs such as AutoDock Vina.

For the first time, the pipelines were examined based 
on low-resolution receptor structures as predicted by 
the state-of-the-art protein structure prediction method 
I-TASSER. As expected, the accuracy of the docking 
results is much lower than that based on experimental 
holo-structures due to the severe distortion of the bind-
ing pockets in the apo-models predicted by I-TASSER. 
Nevertheless, the number of acceptable cases with a 
ligand RMSD < 5 Å predicted by EDock is still higher than 
AutoDock Vina (by 67%) and DOCK6 (by 159%). One of 
the advantages in EDock is the use of REMC simulations, 
which can significantly refine the initial docking models 
created from graph matching. This was also manifested 
through the significant superiority of EDock over BSP-
SLIM [23], another blind docking approach based only 
on negative imaging. Meanwhile, the REMC simulations 
allow for adoption of a composite weighting strategy 
in the parallel replica runs, which helps to accommo-
date different levels of local pocket distortion and steric 
overlaps between ligand and receptor atoms, as the lat-
ter often vary greatly from case to case. The data also 
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revealed a higher sensitivity of the docking performance 
towards the local binding pocket quality than the global 
fold of the predicted receptor models. Although EDock’s 
average running time is slower than AutoDock Vina and 
DOCK6, (2.02  h compared 0.33 and 18.42  min, respec-
tively), EDock can obtain diverse initial conformations 
by graph matching and select the most reasonable dock-
ing pose through simulation energy ranking. The decoys 
in the different local minimum energy landscape can be 
more thoroughly searched by REMC simulation rela-
tive to other programs. Finally, near native poses can be 
selected by XSCORE ranking for experimental receptor 
structure and SPICKER clustering for I-TASSER models. 
The SPICKER scoring system is superior to XSCORE for 
docking on predicted models and is not possible without 
the REMC simulation. Despite the promising success 
of EDock, docking ligands with low-resolution recep-
tor structures remains a significant challenge. While the 
composite van der Waals weighting can help alleviate 
steric clashes, the atomic overlaps between ligand and 
receptor still exist and can impact the precise docking 
energy calculations. Thus, new flexible docking meth-
ods that can integrate both ligand and receptor structure 
changes will be essential to address this issue; related 
work is currently under development.

Availability and requirements
Project Name: EDock.

Project home page: https ://zhang lab.ccmb.med.umich 
.edu/EDock /.

Operating system: Binary in Linux, Source code plat-
form independent.

Programming language: C++, Python.
Other requirements: GCC 7.4.0 or higher or compat-

ible Linux operating system.
License: GNU GPL.
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