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Supplementary Texts 
 

Text S1. The normalized number of effective sequences (Neff) in MSA 

The depth of a multiple sequence alignment (MSA) is measured by the normalized number of 

effective sequence (Neff) in this work: 
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where L is the length of protein, N is the number of sequences in the MSA, Ὓȟ is the sequence 

identity between the j-th and i-th sequences. ὍὛȟ πȢψ equals to 1 if Ὓȟ πȢψ, or zero otherwise. 

Therefore, Neff is essentially equal to the number of non-redundant sequences (sequence 

identity<0.8) in the MSA normalized by the protein length. 

 

Text S2. The comparison of Pfam families in Pfam database and supplemented by 

metagenome data 

To examine the advantage of using microbiome sequences, we compared the MSAs from the 

Pfam database and the MSAs built by DeepMSA on metagenome databases on 2,214 Hard Pfam 

families. To make a fair comparison, we did not directly use the existing profile data in the Pfam 

database. Instead, we have reconstructed the MSA based on the Pfam family sequences using the 

DeepMSA program that is that same as what we used in this work. For doing so, we first run 

DeepMSA for each query sequence, and then used the Hidden Markov Model (HMM) generated at 

the second step of DeepMSA to search against the Pfam family sequences downloaded from the 

Pfam database to construct the MSA for the 2,214 Pfam family. 

In Figure S3, we presented a quantitative comparison of the two sets of MSAs. First, due to 

the enlarged sequence database (3,643,924 from Metagenome database vs. 1,015,317 from 2,214 

Pfam families), the average number of sequences for the Metagenome MSA (1645.85Ñ842.45) is 

3.6-fold higher than that of the Pfam MSA (458.58Ñ275.62) (Figure S3A). Accordingly, the number 

of effective sequences (Neff) of Metagenome MSA (7536.22) is nearly 3-fold larger than that of 

Pfam MSAs (25.5013.25) (Figure S3C). Although the average sequence identity to the query for 

the Metagenome MSAs (46.7028.65) is higher than that of Pfam MSAs, the former has a higher 

diversity score (7.623.15) than the latter (3.891.86) (Figure S3D), when measured by the Meff 

score used in HHblits (1). 

It is natural that searching through a larger sequence database usually costs more CPU time for 

constructing the MSAs. For example, for the Pfam MSAs, the search space was 0.74 TB and the 

average search time is 1.42Ñ0.85 hours. For the Metagenome MSA, the search space was 2.4 TB 

and the average search time is 6.38Ñ2.68 hours (if used without MetaSource). This was one of the 

reasons that motivated us to develop MetaSource to guide metagenome selections. According to our 
benchmark validation on the 204 Pfam families with solved structure, the MetaSource could reduce 

the search time by 3.3 times (=5.44h/1.65h). Thus, although the overall time cost of MetaSource is 

still slightly higher than the Pfam MSA, the MSA quality and contact accuracy are significantly 

improved when combining MetaSource with microbiome databases. 

 

Text S3. Case studies verified the applicability and interpretability of the targeted MetaSource 

model 
Through the case studies, our targeted metaSource model shows a strong applicability and good 

biological interpretability. Among 964 Pfam families (Neff over 16 and C-score over -0.25), 10 Pfam 

families are selected for case studies (Table S4).  

These Pfam families are selected based on the literature review and the comparison of prediction 

result (measured by the Neff score) for four commonly used datasets (Uniref100 (2), IMG(2), Tara 

Oceans (3) and Metaclust (3)). These four datasets are commonly used to assist the structure and function 

prediction for unsolved proteins.  

First, assisted by Soil biome, PF05120 could be supplemented with sufficient homologous sequences 

(Neff score=487.5 and C-score=-0.18). Based on our targeted metasource model, this Pfam family is 

successfully classified into the Soil biome (accuracy: 0.968). However, the other four commonly used 

datasets supply insufficient homologous sequences, reflected by the lower Neff score than the Soil biome 

used in our research: 32.0, 336.8, 69.0 and 178.9 for Uniref100, IMG+ Uniref100, Tara 

Oceans+Uniref100 and Metaclust+Uniref100, respectively. This result indicates that our targeted 



prediction model can accurately predict that Soil biome could be used to supplement the homologous 

sequence of PF05120. Furthermore, this prediction result could be interpreted by its unique biological 

role in Soil biome for PF05120: According to the records in Pfam families, the members in PF05120 are 

annotated as gas vesicles proteins. These gas vesicles proteins are permeable to ambient gases by 

diffusion and provide buoyancy, enabling cells to move based on the air-soil interface (4, 5). This protein 

plays an important role in the communications between different soil microbiome communities(4). 

Second, the accuracy and interpretability of our targeted metaSource model could also be proved by 

other biomes: Among the 964 Pfam families with C-score >-0.25, PF12652 is successfully classified into 

the biome of Fermentor by our metasource model (accuracy: 0.975). Actually, measured by a high Neff 

score (305.6) and C-score (-0.16), our protein structure prediction results also confirm this result. 

However, insufficient homologous could be provided by four datasets for PF12652 (Neff score 232.6, 

264, 295.2, 299.6 for Uniref100, IMG+ Uniref100, Tara Oceans+ Uniref100 and Metaclust+ Uniref100, 

respectively). The fermentor-related function of proteins in PF12652 could explain this result: based on 

the records in PF12652, this Pfam family is related to spore development. The bacteria that enrich the 

spore development function are closely related to anaerobic fermentation, the main function of 

fermenters (6).  

Finally, based on an investigation of the correctly classified Pfam families, great application 

prospects have sprung up using our targeted MetaSource model: PF13822 (classified into Soil biome, 

accuracy: 0.982) is identified as Acyl-CoA carboxylase epsilon subunit, which is involved in the 

biosynthesis of long-chain fatty acids. The long-chain fatty acids are important for Rhizobium 

leguminosarum Growth and Stress Adaptation (7). PF09828 and PF05425 are two important antibiotics. 

These two antibiotics shows the resistance to chromate and copper, which are harmful to the agricultural 

plants and human (8, 9). PF09650 (classified into Soil biome, accuracy: 0.965), is identified as putative 

polyhydroxyalkanoic acid (PHA) system protein, and could produce the bioplastic (10). 

 

Text S4. The construction of ñPhylaSourceò for guiding the 3D structure prediction 

supplemented by metagenome 

It might be interesting to look at the phylum label instead of biome label to train a ñPhylaSourceò 

model for guiding the search of homologous sequences from the genome sequences from specific 

Phyla. To do this, we used the same set of 964 Pfam families as MetaSource used to train the 

PhylaSource model. Since the metagenomic data does not contain the phylum label, instead of using 

the biome data from metagenome database, we downloaded all the available Prokaryotic and viral 

genomes (refseq database, https://ftp.ncbi.nlm.nih.gov/genomes/refseq/) as the taxonomical 

database for training the PhylaSource. Here we downloaded Prokaryotic and viral genomes, since 

we found that over 80% the supplemented sequences from the previous 964 MSAs built from 

metagenome database can be assigned as those genomes by blast (version 2.7.1) with a strict 

threshold (E-value 1E-5, sequence identity 90%). The data downloaded from NCBI covers 48 phyla 

and counts for 736GB data with 718,314 protein sequences. These sequences were divided in to 48 

sub-blocks, where each block only contains the sequences belong to one phylum. A ñPhylaSourceò 

model was constructed using a multi-class logistic regression model (the python package, sklearn) 

to predict the relative probability of every phylum for a given Pfam family, where the phylum 

sample with the highest probability was used for guiding the homologous sequence search. For 

validation, we selected top-10 predicted phylum databases since a single phylum database is too 

small (average size=15.3GB) to give sufficient supplement sequences. We tested the number of 

predicted phylum databases from 1 to 48 phyla (ranked by the relative abundance) and found that 

the highest accuracy of PhylaSource (80.2%) was achieved when the top-10 phyla were used 

(Figure S10A).  

To further examine the practical usefulness of the PhylaSource model for 3D structure 

modeling, we predicted the phylum probability distribution and selected the top-10 phyla by 

PhylaSource to supplement their homology sequence search at the step-3 of DeepMSA. For the 204 

test families with solved structures, PhylaSource was able to predict the phyla which resulted in a 

higher contact accuracy in 69.5% of cases or a higher TM-score in 61.4% of cases, compared to that 

using all genome sequences. The permutation P-value is 0.001, indicating that the difference is 

statistically significant.  

Figure S10B displays the average contact accuracy and TM-score of the C-I-TASSER models 

when using MSAs collected from the all the genome data from NCBI (named as Phyla data) and 

the dataset selected by PhylaSource on the 204 test families. It was shown that, although the volume 

of the sequence database by PhylaSource is much smaller (228 GB/per target and 736 GB/per target 

https://ftp.ncbi.nlm.nih.gov/genomes/refseq/


for PhylaSource and phyla data respectively), using the targeted dataset from PhylaSource resulted 

in a higher contact accuracy (0.488 vs. 0.476) and TM-score (0.617 vs 0.615), which corresponds 

to a P-value=1.5E-5 and 2.3E-5, respectively, in Studentôs t-test. These results indicate that the MSA 

from PhylaSource could help depress the sequences from the ñwrongò source Phyla. However, with 

a limited phylum data, the PhylaSource had a lower accuracy of target phyla prediction and a smaller 

magnitude of contact/TM-score improvement than the MetaSource, although they both 

demonstrated a similar level of search space and time reduction of sequence databases. 

 

Text S5. The construction of ñEvalueSourceò for predicting the E-values when collecting 

homology sequences  

The careful E-value selection in finding homologous sequences is often an important procedure 

to MSA construction and subsequent 3D structure prediction. Hence, it would be useful to predict 

an optimal E-value cutoff for collecting the homologous sequences from the metagenome for 

specific Pfam family, from which the reliable 3D structure would be modeled. 

Similar to MetaSource, the EvalueSource was trained on the 964 Pfam families, where the 

features for the training set were based on the species distribution for Pfam families, obtained from 

the Pfam database. We particularly designed a EvalueSource model to predict the E-value cutoff 

combination used by hmmer and HHblits in DeepMSA step 3 (for metagenome searching). In the 

default DeepMSA pipeline (Figure S7), the same E-value (=1E-3) was used for the HHblits and 

hmmer when collecting the homologous sequences from metagenome. In the EvalueSource pipeline, 

eight E-values for HHblits (1E+1, 1E+0, 1E-1, 1E-2, 1E-3, 1E-6, 1E-10, and 1E-30) and six E-

values for hmmer (1E+1, 1E+0, 1E-1, 1E-2, 1E-3, and 1E-4) were selected as predicted labels. 

Hence, one of the paired E-values from 8Ĭ6=48 combinations is the final label to be predicted by 

EvalueSource when given a Pfam family, and hence 48 MSAs should be constructed for each Pfam 

families to collect the homologous sequences from metagenome. For each MSA, the sum of the Top 

L long-range contact scores are used to estimate the best combination of E-values for HHblits and 

hmmer for structure prediction, where the E-value cutoff combination associated with the largest 

contact score would be set as the target label for the training set (11). Finally, four-fold cross-

validation shows that the highest accuracy of this model is 82.28% (Figure S10C).  

To further examine the applicability of this model to 3D structure modeling, we used the same 

204 Pfam families with solved structure as the validation dataset. In Figure S10D, we compared the 

modeling results from EvalueSource with that using default E-value combinations (1E-3 and 1E-3, 

named as default combination). It was shown that, using the predicted combinations of E-values 

from EvalueSource resulted in a slightly higher TM-score (0.613) and contact accuracy (0.508) than 

that using the default E-values (0.609 and 0.496), which corresponds to a P-value=0.055 for TM-

score and a P-value=0.062 for contact accuracy in Studentôs t-test. These results indicate that the 

EvalueSource could help select target E-values for homologous sequence collections, which have 

resulted in marginal TM-score and contact accuracy improvement. However, EvalueSouce does not 

generate similar effect as MetaSource for improving both speed and accuracy of MSA collection 

and 3D structure prediction. This is probably due to the fluctuation of sequence distances among 

different protein families, while the inherent linkage between protein families and the ecological 

species groups could not be captured by the generic sequence distances such as E-value cutoffs. 

 
  



Supporting Figures 
 

 
Figure S1. TM-scores of the C-I-TASSER models from 168 proteins benchmark dataset for 

MSAs with different Neff values using a base of 2. The black line represents the average TM-

scores under each Neff bin with a bin width of two. 

  



 
Figure S2. Accuracy estimation of predicted models using C-score defined by Eq. (2), in 

Materials and Methods. Represented by TM-score of the first C-I-TASSER model versus C-score. 

 



 
Figure S3. The comparison of Pfam MSA and Metagenome MSA. (A) The number 

of sequences for Pfam families in Pfam database and supplemented by metagenome 

data. (B) The sequence similarity for MSA of Pfam families to the query in Pfam 

database and supplemented by metagenome data. (C) The Neff score distribution for 

Pfam families in Pfam database and supplemented by metagenome data. (D) The Meff 

score distribution for Pfam families in Pfam database and supplemented by 

metagenome data. 

  



 
Figure S4. C-I-TASSER models for 12 cases from 168 proteins benchmark dataset that has 

large Neff but low TM-score. (A) C-I-TASSER models (cyan) and experimental structures (red) 

of 12 cases. (B) 1v1i trimmer complex (three copies are shown as red, grey and yellow) and C-I-

TASSER model (cyan) for the 1v1i_A1 monomer. (C) Predicted contact map (red) and experimental 

contact map, where the inter-chain contacts are shown as blue circle and intra-chain contacts are 

shown as grey points.  

  



 

 
Figure S5. The species richness statistic for four biomes (Fermentor, Gut, Lake and Soil). The 

raw metagenome sequences were assembled, extract the 16s rRNA and clustered by 97% similarity 

to obtain the operational taxonomic units (OTUs) distribution, sequentially. The OTU distribution 

could represent the species richness in corresponding biome. 

  



 

Figure S6. The top 20 importance features (on genus level) for the multiple-classified Random 

Forest model. The importance of features was estimated and ranked by accuracy and Gini index. 

  



 
Figure S7. DeepMSA pipeline for multiple sequence alignment generation. The metagenome 

database in the third step can be the combination of four biomes (Fermentor, Gut, Lake and Soil) or 

each individual biome.    

 






































