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Deep-learning-based single-domain and 
multidomain protein structure prediction 
with D-I-TASSER
 

Wei Zheng    1,2,8, Qiqige Wuyun    3,8, Yang Li    4,8, Quancheng Liu    2, 
Xiaogen Zhou    2, Chunxiang Peng    2,5, Yiheng Zhu2, Lydia Freddolino2,5   & 
Yang Zhang    4,6,7 

The dominant success of deep learning techniques on protein structure 
prediction has challenged the necessity and usefulness of traditional 
force field-based folding simulations. We proposed a hybrid approach, 
deep-learning-based iterative threading assembly refinement (D-I-TASSER), 
which constructs atomic-level protein structural models by integrating 
multisource deep learning potentials with iterative threading fragment 
assembly simulations. D-I-TASSER introduces a domain splitting and 
assembly protocol for the automated modeling of large multidomain 
protein structures. Benchmark tests and the most recent critical assessment 
of protein structure prediction, 15 experiments demonstrate that 
D-I-TASSER outperforms AlphaFold2 and AlphaFold3 on both single-domain 
and multidomain proteins. Large-scale folding experiments further show 
that D-I-TASSER could fold 81% of protein domains and 73% of full-chain 
sequences in the human proteome with results highly complementary 
to recently released models by AlphaFold2. These results highlight a new 
avenue to integrate deep learning with classical physics-based folding 
simulations for high-accuracy protein structure and function predictions 
that are usable in genome-wide applications.

Substantial progress in protein three-dimensional (3D) structure  
prediction has been witnessed by the community-wide critical assess-
ment of protein structure prediction (CASP) experiments1,2. A first 
milestone in the field occurred when deep learning was used to pre-
dict local structure features3, such as contact and distance maps4–6, 
hydrogen bonding7 and torsion/dihedral angles8, and full-length 3D 
models was then constructed by optimally satisfying the geometry 
predictions, typically through quasi-Newton minimization9 followed 

by full-atom relax10 or the crystallography and nuclear magnetic reso-
nance system11. Another wave of predictions is led by an end-to-end 
learning protocol, AlphaFold2 (ref. 12), which was developed to fur-
ther improve the two-stage restraint-based modeling methods. Most 
recently, AlphaFold3 (ref. 13) found that the effectiveness and generality 
of the end-to-end learning can be further enhanced by the integration of 
the diffusion samples. These deep learning approaches demonstrated 
more accurate performance over the traditional structural folding 
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the D-I-TASSER pipeline, including force fields and various protocols, 
is given in the Methods.

Benchmark of D-I-TASSER on single-domain proteins
Structural modeling of single-domain proteins is fundamental for 
computational protein structure prediction. To examine the per-
formance of our pipeline, we first tested D-I-TASSER on a set of 500 
nonredundant ‘Hard’ domains collected from the Structural Classifica-
tion of Proteins (SCOPe), Protein Data Bank (PDB) and the CASP 8–14 
experiments, for which no significant templates can be detected by 
LOMETS3 from the PDB after excluding homologous structures with 
a sequence identity >30% to the query sequences (see ‘Benchmark 
dataset collection’). As listed in Supplementary Table 1, D-I-TASSER 
achieved an average template modeling (TM) score of 0.870, which 
is 108% and 53% higher than the previous I-TASSER-based pipelines, 
including I-TASSER (average TM score = 0.419), which solely uses 
template information to fold proteins22, and C-I-TASSER (average TM 
score = 0.569), which uses deep-learning-predicted contact restraints. 
The differences between both methods are highly significant with P val-
ues of 9.66 × 10−84 and 9.83 × 10−84, respectively, using paired one-sided 
Student’s t tests. Figure 2a,b shows the evolution of the I-TASSER line-
age through head-to-head comparisons between the three methods, 
where D-I-TASSER has a higher TM score in 99% and 98% of the cases 
than I-TASSER and C-I-TASSER, respectively. If we count the cases with a 
correct fold (that is, TM score > 0.5)28,29, D-I-TASSER folded 480 targets, 
a count 3.3 and 1.5 times higher than I-TASSER (145) and C-I-TASSER 
(329), respectively (Supplementary Table 1).

In Fig. 2c, we made a further comparison of D-I-TASSER with the 
cutting-edge AlphaFold2 method (v.2.3)12, where the average TM score 
of D-I-TASSER models (0.870) is 5.0% higher than that of AlphaFold2 
(0.829, P = 9.25 × 10−46; Supplementary Table 1). In addition, D-I-TASSER 
generated better models with a higher TM score than AlphaFold2 for 
84% of the targets, demonstrating that D-I-TASSER consistently out-
performs AlphaFold2. It is notable that the difference between the two 
mainly came from difficult domains. For the 352 domains where both 
D-I-TASSER and AlphaFold2 achieved a TM score >0.8, for example, 
the average TM score is very close (0.938 versus 0.925 for D-I-TASSER 
and AlphaFold2, respectively). However, for the remaining 148 more 
difficult domains, where at least one of the methods performed poorly, 
the TM score difference is dramatic (0.707 for D-I-TASSER versus 0.598 
for AlphaFold2, with a P = 6.57 × 10−12 by one-sided Student’s t test). 
Among the 148 difficult domains, D-I-TASSER builds models with 
TM scores higher than AlphaFold2 by a difference of at least 0.1 in 63 
domains, whereas AlphaFold2 has a TM score substantially higher than 
the D-I-TASSER model for only one of them.

Here our benchmark comparison was mainly against AlphaFold2.3. 
Nevertheless, we observed minimal differences between the various 
versions of AlphaFold, including AlphaFold2.0, AlphaFold2.1, Alpha-
Fold2.2, AlphaFold2.3 and AlphaFold3, which were run on all 500 test 
domains (Fig. 2d). Notably, the average TM score of D-I-TASSER (=0.870) 
is significantly higher than that of all AlphaFold versions, that is, TM 
score = 0.817 for AlphaFold2.0, TM score = 0.818 for AlphaFold2.1, TM 
score = 0.819 for AlphaFold2.2, TM score = 0.829 for AlphaFold2.3 and 
TM score = 0.849 for AlphaFold3, with P values below 1.79 × 10−7 for all 
comparisons (Supplementary Table 2). Given that the training data 
used by different versions of AlphaFold vary and to further address 
the concern of over-training, we collected a subset of 176 targets from 
the 500 hard targets, whose structures were released after 1 May 2022, 
a time after the training date of all AlphaFold programs. The results 
on this subset of proteins showed again that D-I-TASSER (with TM 
score = 0.810) significantly outperformed all five versions of AlphaFold 
programs (with TM score = 0.734 for AlphaFold2.0, TM score = 0.728 
for AlphaFold2.1, TM score = 0.727 for AlphaFold2.2, TM score = 0.739 
for AlphaFold2.3 and TM score = 0.766 for AlphaFold3), with P values 
less than 1.61 × 10−12 in all cases (Supplementary Table 3).

methods built on extensive physical force field-based simulations, 
such as I-TASSER14,15, Rosetta10 and QUARK16. Although physics-based 
methods retain their use for studying protein folding principles and 
pathways, such as through tracking simulation trajectories, the CASP 
results raised an important question about the necessity and useful-
ness of physics-based approaches to high-accuracy protein structure 
prediction17.

Furthermore, an important existing limitation in the field is that 
most advanced methods emphasize the modeling of domain-level 
structures, which constitute the fundamental folding and functional 
units within the complicated protein tertiary structures. Neverthe-
less, two-thirds of prokaryotic proteins and four-fifths of eukaryotic 
proteins incorporate multiple domains18 and execute higher-level 
functions through domain–domain interactions19. Most methods 
for modeling multidomain proteins, including both physics and 
deep-learning-based approaches, lack a multidomain processing 
module20,21. Consequently, the accurate and efficient modeling of 
multidomain proteins remains a challenge in the field.

We present a hybrid pipeline, deep-learning-based iterative 
threading assembly refinement (D-I-TASSER), which couples multi-
source deep learning features, including contact/distance maps and 
hydrogen-bonding networks, with cutting-edge iterative threading 
assembly simulations22 for atomic-level protein tertiary structure mod-
eling. Different from the quasi-Newton minimization algorithm, which 
requires the differentiability of the objective function, Monte Carlo 
simulations performed by D-I-TASSER allow for the implementation 
of the full version physics-based force field of I-TASSER for structural 
optimization and refinement when coupled with the deep learning 
models. In addition, a new domain-splitting and reassembly module is 
introduced for the automated modeling of large multidomain protein 
structures. Both benchmark tests and the most recent blind CASP15 
experiment showed that the hybrid D-I-TASSER pipeline surpasses tra-
ditional I-TASSER series methods and outperforms the state-of-the-art 
deep learning approaches AlphaFold2 (ref. 12) and AlphaFold3 (ref. 13). 
As an illustration of large-scale application, D-I-TASSER was applied to 
the structural modeling of the entire human proteome and resulted 
in a larger coverage of foldable sequences compared to the recently 
released AlphaFold Structure Database23. The D-I-TASSER programs 
and the genome-wide modeling results have been made freely acces-
sible to the community through https://zhanggroup.org/D-I-TASSER/. 
All benchmark datasets and the standalone package are available at  
https://zhanggroup.org/D-I-TASSER/download/ for academic use.

Results
D-I-TASSER is designed for hybrid deep learning and threading fragment 
assembly-based protein structure modeling with a focus on nonhomol-
ogous and multidomain proteins. As shown in Fig. 1a, D-I-TASSER first 
constructs deep multiple sequence alignments (MSAs) by iteratively 
searching genomic and metagenomic sequence databases and selects 
the optimal MSA through a rapid deep-learning-guided prediction 
process. The pipeline then creates spatial structural restraints by Deep-
Potential7,24,25, AttentionPotential and AlphaFold2 (ref. 12), which are 
driven by deep residual convolutional, self-attention transformer and 
end-to-end neural networks, respectively. Full-length models are then 
constructed by assembling template fragments from multiple thread-
ing alignments by LOcal MEta-Threading Server (LOMETS3)26 through 
replica-exchange Monte Carlo (REMC) simulations27, under the guid-
ance of a highly optimized deep learning and knowledge-based force 
field. To tackle the complexity of multidomain structural modeling, 
D-I-TASSER incorporated a new domain partition and assembly mod-
ule, in which domain boundary splitting, domain-level MSAs, thread-
ing alignments and spatial restraints are created in an iterative mode, 
where the multidomain structural models are created by full-chain 
I-TASSER assembly simulations as guided by the hybrid domain-level 
and interdomain spatial restraints (Fig. 1b). A detailed description of 
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We attribute the highly accurate performance of D-I-TASSER to its 
optimal combination of different sources of deep learning restraints. 
In Fig. 2d, we show a TM score comparison of I-TASSER simulations 
with different restraints. While the deep learning contact maps by 
C-I-TASSER improved the TM score of I-TASSER by 36%, the incremental 
incorporations of additional distance restraints from DeepPoten-
tial, AttentionPotential and AlphaFold2 further increase the extent 

of improvements to 61%, 79% and 108%, respectively (Supplementary 
Table 2). Notably, when only distance restraints from AlphaFold2 are 
used, the average TM score of the final model is 0.857, which is slightly 
(but significantly, in terms of P = 4.47 × 10−16) lower than the TM score of 
0.870 achieved by models incorporating restraints from DeepPotential, 
AttentionPotential and AlphaFold2, highlighting the benefits provided 
by integrating different sources of deep learning restraints. In Fig. 2e, 
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Fig. 1 | Flowcharts for D-I-TASSER protein structure prediction. a, The 
D-I-TASSER pipeline consists of four steps of deep MSA generation, template 
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assembly simulations. b, The pipeline of the multidomain structural modeling 
module consisting of domain boundary identification, domain-level threading 
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http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-025-02654-4

we present an example from Yersinia pestis 2-C-methyl-d-erythritol 
2,4-cyclodiphosphate synthase (PDB ID: 3fpiA), in which LOMETS 
failed to identify reasonable templates and the best template (PDB 
ID: 4cvhA) has a TM score of 0.196. Although the classical version of 
I-TASSER considerably refined the template quality by multiple frag-
ment assembly simulations, the model still has an incorrect fold with 
TM score = 0.302 (Supplementary Fig. 1b). With the guidance of deep 
learning restraints, D-I-TASSER assembled an excellent model with a 
TM score of 0.986 (Fig. 2f). The improvement is mainly attributed to 
the high accuracy of spatial restraints, where a very low mean absolute 
error (MAE) for the distance-map prediction relative to the native 
(MAEn = 0.24 Å, equation (13)) was achieved (Fig. 2g). Figure 2h shows 
the folding trajectories of D-I-TASSER simulations starting from the 
template structure 4cvhA. Guided by D-I-TASSER’s newly designed 
deep learning potentials (equations (25–31)), the MAE of predicted 

distances relative to the decoy model (MAEm; equation (14)) reduces 
rapidly from 7.7 to 1.2 Å in the first 40 REMC cycles, where TM scores 
of the decoys increased from 0.31 to 0.71. After 100 REMC sweeps, 
the MAEm remained stable at around 0.39 Å, resulting in a stable TM 
score of roughly 0.96. These data demonstrated a strong correlation 
between the D-I-TASSER modeling accuracy and its ability to create and 
optimally implement the high-quality spatial restraints.

Another important contributor to D-I-TASSER’s performance is 
the high-quality MSAs generated by DeepMSA2. For example, if we 
remove the DeepMSA2 module from the D-I-TASSER pipeline, the aver-
age TM score of its models reduces to 0.836 (Supplementary Table 2), 
which is significantly lower than that of the full D-I-TASSER pipeline 
(0.870), corresponding to a P = 3.63 × 10−69 using paired one-sided 
Student’s t tests. DeepMSA2 contributes to D-I-TASSER mainly in the 
following two aspects: its extensive metagenomics databases and the 
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and the error bar depicts s.d. e, Structure superposition of the best LOMETS 
template (PDB ID: 4cvhA) over the target structure (PDB ID: 3fpiA). f, Structure 
superposition of the first D-I-TASSER model with the target structure.  
g, Comparison of inter-residue distance map predicted from deep learning 

models (upper triangle) and the distance map calculated from the target 
structure (lower triangle) for PDB ID: 3fpiA. h, Trajectory of TM scores and MAEm 
during the REMC cycles of the replica that starts with template PDB ID: 4cvhA. 
The structures are decoy models taken from different simulation steps. 
 i, Structure superposition of the AlphaFold2 model over the target structure 
(PDB ID: 4jgnA). j, Structure superposition of the D-I-TASSER model with the 
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deep-learning-derived MSA ranking algorithm. To demonstrate this, 
 if D-I-TASSER builds models solely using the final MSA from DeepMSA2 
without the deep-learning-derived ranking, the average TM score is 
0.854, which is higher than that of D-I-TASSER without DeepMSA2. This 
finding underscores the importance of the metagenomics databases. 
However, this performance is still significantly worse than that of the 
full D-I-TASSER pipeline (0.879, P = 2.99 × 10−38), highlighting the con-
tribution of the MSA ranking mechanism. Nevertheless, the superior 
performance of D-I-TASSER is not solely attributable to DeepMSA2. We 
performed a separate experiment where we ran AlphaFold2 using MSAs 
from the state-of-the-art MSA generation tool DeepMSA2. As shown 
in Supplementary Table 1, AlphaFold2 + DeepMSA2 indeed consist-
ently improves the models of AlphaFold2 with the default MSA (0.819 
versus 0.841). However, D-I-TASSER still significantly outperforms 
AlphaFold2 + DeepMSA2 in the average TM score (0.870 versus 0.841), 
corresponding to a P value of 2.89 × 10−56 in the paired one-sided Stu-
dent’s t test. The TM score improvement of D-I-TASSER over AlphaFold2, 
built on the same DeepMSA2 MSAs, primarily arises from D-I-TASSER’s 
capability to integrate multisource deep learning restraints with a 
knowledge-based force field, enabling reassembly and refinement of 
structural conformations.

In Fig. 2i–m, we present another example from RNA silencing 
suppressor p19 of tomato bushy stunt virus (PDB ID: 4jgnA), in which 
D-I-TASSER significantly outperformed AlphaFold2. For this protein, 
AlphaFold2 created a poor model with TM score = 0.335 (Fig. 2i), prob-
ably due to the shallow MSA collection (with a low number of effective 
sequences, neff = 0.36; equation (1)), which resulted in a relatively high 
distance map error with MAEn = 3.20 Å (Fig. 2k). In contrast, by building 
on the iterative DeepMSA2 searches through multiple genomics and 
metagenomics sequence databases (see ‘DeepMSA2 for MSA genera-
tion’), D-I-TASSER constructed a 6.75-fold deeper MSA with neff = 2.43. 
Figure 2l shows the distance map of AlphaFold2 with the new MSA from 
DeepMSA2, which resulted in a considerably improved MAEn = 0.69 Å. 
Nevertheless, this distance map from AlphaFold2 still lacks the distance 
information between the N-terminus and other regions, while the 
incorporation of the DeepPotential and AttentionPotential models 
resulted in a much-improved distance accuracy with MAEn = 0.45 Å that 
covers the entire sequence region (Fig. 2m). Guided by this composite 
distance map, D-I-TASSER finally created a high-quality structure model 
with a TM score = 0.871 (Fig. 2j). This case highlights the importance of 
DeepMSA2 for deeper MSA and more comprehensive co-evolutionary 
profile collections, which help significantly improve the coverage and 
accuracy of deep learning restraints and therefore the quality of final 
D-I-TASSER structural assembly simulations.

Although the primary goal of the deep learning models was to fold 
nonhomologous hard domains, it is of interest to examine whether the 
deep learning restraints are accurate enough to help improve the easy 
domains that have homologous templates. For this, we collected 762 
nonredundant domains from SCOPe2.06, the PDB and CASP 8–14, for 
which LOMETS programs could detect one or more templates with 
the normalized z score >1 (Supplementary Note 3—equation (1)). As 
summarized in Supplementary Table 1, the TM score of I-TASSER for 
easy domains (0.729) is dramatically higher than that for hard domains 
(0.419), due to the help of homologous templates. Nevertheless, the 
TM score of D-I-TASSER (0.936) is still significantly higher than that 
of I-TASSER, C-I-TASSER, AlphaFold2 and AlphaFold2 + DeepMSA2, 
with P values of 6.87 × 10−125, 3.34 × 10−125, 9.01 × 10−76 and 2.94 × 10−66, 
respectively, in paired one-sided Student’s t tests, demonstrating that 
the accuracy of deep learning restraints reaches a level complementary 
to that of the threading templates and therefore improves D-I-TASSER 
simulations for the homologous targets.

While D-I-TASSER has been shown to produce high-quality models 
for the structured regions of experimentally determined proteins, 
modeling disordered regions remains challenging. Disordered regions 
are segments of the polypeptide chain that lack a stable, well-defined 

3D structure under physiological conditions, and there is currently 
no consensus on the correct modeling approach due to the absence 
of experimental structural data for these regions. Because disordered 
regions are often more flexible, it may be advantageous for structure 
prediction methods to model these regions with multiple conforma-
tions. An analysis of 1,262 proteins from Benchmark-I with experimen-
tally solved structures in the PDB revealed that D-I-TASSER generates 
the top five models with greater variation in the disordered regions 
than AlphaFold2, with average root mean square deviations (RMSDs) 
of 4.37 Å versus 2.75 Å, respectively (Supplementary Fig. 2). This data 
suggest that physics-based approaches like D-I-TASSER, which model 
conformational assemblies through REMC simulations and explore a 
broader conformational space, may have potential advantages over 
purely deep-learning-based methods such as AlphaFold2 in modeling 
disordered structures.

Performance of D-I-TASSER on multidomain proteins
To examine the capacity of D-I-TASSER on multidomain structural 
prediction, we collected a set of 230 nonredundant proteins from 
the PDB that consists of two to seven domains, with a total coverage 
of 557 individual domains (see ‘Benchmark dataset collection’). 
Figure 3a,b summarize the performance comparison between 
D-I-TASSER and AlphaFold2 on full-chain and domain-level struc-
tural predictions, respectively. It was shown that D-I-TASSER created 
full-chain and domain-level models with TM scores of 0.720 and 
0.858, which are 12.9% and 2.8% higher than those of the Alpha-
Fold2 models (0.638 and 0.835), respectively. The P values by 
one-sided Student’s t test between the two methods are 1.59 × 10−31 
and 2.31 × 10−16 for full-chain and individual domains, respectively 
(Supplementary Tables 4 and 5), indicating that the differences are 
statistically significant.

Overall, D-I-TASSER has a higher TM score than AlphaFold2 in 
88% of full-chain proteins and in 63% of domain-level cases. Again, the 
improvement on multidomain proteins mainly occurs on the difficult 
targets, where the TM score improvements of D-I-TASSER over Alpha-
Fold2 are 17.1% and 9.9%, respectively, for the 185 full-chain and 166 
domain-level cases for which at least one method performed poorly 
with a TM score <0.8. Figure 3c further lists the TM score compari-
son of D-I-TASSER and AlphaFold2 on proteins that contain different 
numbers of domains. The data show a quite consistent performance 
of D-I-TASSER across different domain counts, with TM scores of 0.714, 
0.747 and 0.715 for two-domain, three-domain and high-order proteins, 
respectively. They are all significantly higher than those of AlphaFold2, 
which range from 0.62 to 0.65, with P values by one-sided Student’s t 
test below 2.41 × 10−5 in all cases (Supplementary Table 4).

As a case study, we show in Fig. 3d an example from the Chla-
mydomonas reinhardtii flagellar radial spoke protein (PDB ID: 7jtkB), 
which is a two-domain protein consisting of 801 residues with a domain 
boundary definition as ‘1–202 and 203–801’. AlphaFold2 created a 
poor-quality full-chain model with a low TM score = 0.425 (Fig. 3d, 
top), where a likely cause is that the AlphaFold2 MSA detected too few 
homologous sequences with neff = 0.1, which led to poor predictions 
of both interdomain (MAEn = 5.91 Å) and intradomain (MAEn = 1.30 Å 
and 0.83 Å for two domains, respectively) distance maps (Fig. 3e). In 
contrast, D-I-TASSER detected full-chain MSAs with a slightly higher 
neff = 0.4. Especially, the domain-splitting process allows DeepMSA2 
to detect 688 and 15 additional homologous sequences for domains 1 
and 2, respectively, which helped the deep learning models to derive 
more reliable evolutionary information. As a result, the distance maps 
become much more accurate, with MAEn being 0.71 Å for full chain, 
0.57 Å for domain 1 and 0.48 Å for domain 2 (Fig. 3f). Guided by the 
combined intradomain and interdomain restraints, D-I-TASSER gener-
ated an excellent structural model with a full-chain TM score of 0.934 
and domain-level TM scores of 0.971 and 0.910, respectively, which are 
substantially higher than that of AlphaFold2.
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Figure 3g shows another example from human InaD-like protein 
(PDB ID: 6irdC), which is a medium-sized two-domain protein with 
domain boundary definition as ‘1-93;94-190’. Although AlphaFold2 
generated good-quality domain-level models with TM scores of 0.894 
and 0.930, the interdomain orientation of the AlphaFold2 model is com-
pletely wrong, resulting in a poor full-chain TM score of 0.503 (Fig. 3g, 
top). The distance-map plot in Fig. 3h indeed shows that AlphaFold2 
suffers from a very low accuracy for the interdomain restraints with 

MAEn = 8.46 Å due to the relatively shallow full-chain MSA. For the same 
protein, D-I-TASSER created a much deeper full-chain MSA with 13,957 
sequences (neff = 296.6), which results in a high-accuracy prediction for 
both intradomain (MAEn = 0.78 Å for domains 1 and MAEn = 0.69 Å for 
domain 2) and interdomain (MAEn = 1.32 Å) distance maps (Fig. 3i), and 
subsequently a significantly improved full-chain model with a TM score 
of 0.890. These results show that the domain-splitting and assembly 
process in the newly introduced multidomain module helps detect 
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Fig. 3 | D-I-TASSER modeling results on 230 multidomain proteins. a,b, Head-
to-head TM score comparisons between the D-I-TASSER and AlphaFold2 on full-
chain modeling (a) and domain-level modeling (b). c, TM score comparison of  
D-I-TASSER and AlphaFold2 on two-domain, three-domain and high-order 
domain proteins. The height of the histogram indicates the mean value and the 
error bar depicts s.d. d, D-I-TASSER and AlphaFold2 models for C. reinhardtii 
flagellar radial spoke protein (PDB ID: 7jtkB) superposed with the target 
structure, where two domains of the target structure are colored differently.  

e, The residue–residue distance map (heat map) along with the number of 
aligned residues per site (n, shown in margins) predicted from AlphaFold2 (upper 
triangle) versus that calculated from the target structure (lower triangle) for PDB 
ID: 7jtkB. f, As in e, but modeled with D-I-TASSER. g, D-I-TASSER and AlphaFold2 
models for human InaD-like protein (PDB ID: 6irdC) superposed with the target 
structure, where two domains of the target structure are colored differently.  
h,i, Equivalent to e,f, respectively, but for PDB ID: 6irdC.
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more comprehensive domain-level evolutionary information and, 
therefore, more accurate interdomain and intradomain restraints, 
which enables D-I-TASSER to create more accurate multidomain struc-
tures relative to the widely used AlphaFold2 method.

Similarly to single-domain protein modeling, the improvement 
of D-I-TASSER relative to AlphaFold2 in multidomain modeling per-
formance is not solely based on DeepMSA2. As proof, we list a com-
parison of D-I-TASSER and a modified version of AlphaFold2 using 
MSAs from DeepMSA2 in Supplementary Tables 4 and 5, respectively, 
for the 230 full-chain and 557 domain-level structures. It is shown that 
the average TM scores of D-I-TASSER models are 7% and 1% higher 
than those of AlphaFold2 + DeepMSA2 for full-chain and individual 
domains, respectively, with P values of 7.86 × 10−34 and 6.54 × 10−6 in 
paired one-sided Student’s t test. It is notable that the TM score changes 
of the two methods are much more significant for full chains than at 
the domain level, indicating that the improvement of D-I-TASSER over 
AlphaFold2 + DeepMSA2 is mainly on the domain-orientation mod-
eling through the multisource restraint-guided structure assembly 
simulations.

It is important to note that multidomain proteins often adopt 
varied conformations, particularly in domain orientation, to meet 
functional requirements. Driven by a composite force field that inte-
grates deep learning with physics-based energy terms, the I-TASSER 
REMC simulations generate extensive sets of diverse conformational 
decoys, offering robust potential for modeling proteins with multiple 
conformational states. In Supplementary Fig. 3, we present a case 
study on the SARS-CoV-2 spike protein complex, which forms a trimer 
with chains existing in both open and closed conformation states 
(Supplementary Fig. 3a). The difference between these two states, 
which are 8.42 Å away from each other, is primarily due to the distinct 
orientation of the C-terminal receptor-binding domain relative to other 
domains. D-I-TASSER successfully predicted models for both states 
(Supplementary Fig. 3b), with the first model representing the closed 
state (TM score = 0.94) and the second representing the open state 
(TM score = 0.99). As shown in Supplementary Fig. 3c, the D-I-TASSER 
simulation decoys are generally grouped into the following three 
categories: open, closed and intermediate states, which are further 
clustered into five clusters by SPICKER30, with the first model (closed 
state) emerging from the largest cluster and the second model (open 
state) from the second-largest cluster. Thus, in contrast to pure deep 
learning approaches, which are trained on crystal structures and typi-
cally produce a single static model, these results underscore the intrin-
sic capability of physics-based structure prediction algorithms, like 
D-I-TASSER, to model proteins across multiple conformational states.

D-I-TASSER performance in CASP15 blind test
As a blind test, the D-I-TASSER pipeline participated in the 
community-wide CASP15 experiment held in 2022 for protein ter-
tiary structure prediction. The CASP15 experiment released 77 pro-
tein targets, including 55 single-domain and 22 multidomain targets. 
These targets can be further divided into 62 template-based modeling 
(TBM) domains and 50 free modeling (FM) domains, where ‘TBM-easy’ 
and ‘TBM-hard’ domains have been merged into ‘TBM’ and ‘FM/TBM’ 
and ‘FM’ domains have been merged into ‘FM’ domains to simplify 
the analyses. Overall, D-I-TASSER created models with correct fold 
(TM score > 0.5) for 95% (=106/112) of domains, with an average TM 
score of 0.878 for the 112 domains (Supplementary Table 6). When 
considering the full-chain level target set, D-I-TASSER generated cor-
rect folds for 94% of cases (=72/77), with an average TM score of 0.851 
(Supplementary Table 7).

In Fig. 4a,b, we list a comparison of D-I-TASSER (named as ‘UB-TBM’) 
with 44 other server groups that participated in the CASP15 ‘regular 
modeling’ and ‘interdomain modeling’ sections, which correspond to 
single-domain and multidomain structures, respectively. D-I-TASSER 
outperformed all other groups in terms of the sums of z scores, 

calculated by the CASP assessors based on the global distance test-high 
accuracy (GDT-HA) score for domain modeling and local distance dif-
ference Test (LDDT) for interdomain modeling, respectively. Overall, 
D-I-TASSER achieved cumulative z scores of 67.20 and 35.53, which were 
2- and 16-fold higher than the performance of the ‘NBIS-AF2-standard’ 
group (that is, the public version 2.2.0 of the AlphaFold2 run by the 
Elofsson Lab on CASP15 targets, which achieved cumulative z scores of 
32.05 and 2.11) for the domains and multidomain targets, respectively. 
It should be noted that the CASP15 included the following two sections: 
the ‘server’ section, where models are automatically generated within 
72 h, and the ‘human’ section, which allows for human expert interven-
tion and permits 3 weeks per target. Supplementary Tables 8 and 9 pro-
vide a comprehensive list of results from all groups in both the server 
and human sections. The results show that even with human groups, the 
D-I-TASSER server still achieved the second (or first) place for ‘regular 
modeling’ targets based on the assessors’ formulae for z score > −2.0 
(or >0.0). Furthermore, the D-I-TASSER server clearly outperformed all 
groups, including the human groups, in ‘interdomain modeling’, where 
the cumulative z score of the D-I-TASSER server was 42.3% higher than 
the second-best group (24.96) in this category.

Figure 4c,d further show head-to-head comparisons between 
D-I-TASSER and the AlphaFold2 and Wallner models on the 112 
domain-level and 22 multidomain targets, respectively, where the 
Wallner group is another strong prediction group from CASP15, based 
largely on massive sampling using AlphaFold2 (ref. 31). For the 112 
domains, we observed that D-I-TASSER-predicted models with a higher 
TM score than AlphaFold2 and Wallner for 84% (=94/112) and 79% 
(=88/112) of the cases, respectively. For the FM targets, the average 
TM score of the D-I-TASSER models (0.833) is 18.8% and 14.7% higher 
than that of the AlphaFold2 (0.701) and Wallner (0.726) models, with  
P values of 3.41 × 10−6 and 3.16 × 10−3 by paired one-sided Student’s t test, 
respectively. When considering the 22 multidomain targets, D-I-TASSER 
created models with a higher TM score than AlphaFold2 and Wallner 
models on 82% (=18/22) and 77% (=17/22) of the targets, where the 
average TM score of the D-I-TASSER models (0.747) was 29.2% and 24.1% 
higher than that of AlphaFold2 (0.578) and Wallner (0.602) models, with 
P values of 1.18 × 10−3 and 4.22 × 10−3 by paired one-sided Student’s t test, 
respectively. These comparison results with AlphaFold2 are largely 
consistent with the benchmark results summarized in Figs. 2 and 3.

In Fig. 4e, we also show a comparison of D-I-TASSER with different 
versions of AlphaFold programs on the 50 FM domains that lack homol-
ogous templates and 20 multidomain targets. While performance 
differences among the AlphaFold versions are minimal, D-I-TASSER 
achieved significantly higher TM scores (0.833 for FM domains and 
0.742 for multidomain targets) than all AlphaFold versions, that is, TM 
scores = 0.715 and 0.599 for AlphaFold2.0, TM scores = 0.723 and 0.598 
for AlphaFold2.1, TM scores = 0.721 and 0.595 for AlphaFold2.2, TM 
scores = 0.726 and 0.592 for AlphaFold2.3 and TM scores = 0.727 and 
0.609 for AlphaFold3, with the P values in paired one-sided Student’s 
t tests all below 4.65 × 10−4/2.00 × 10−2 for FM/multidomain targets, 
respectively (Supplementary Table 10).

As illustrations, Fig. 4f lists structural models of 19 domains 
and 8 multidomain targets, in which the TM score improvements by 
D-I-TASSER were higher than 0.15 compared with AlphaFold2. These 
include some very large multidomain protein targets with >3,000 
residues (for example, T1169 with 3,364 residues and TM score = 0.8), 
marking important progress in modeling large protein structures 
using deep learning restraints—a long-term challenge for traditional 
structure modeling approaches32,33.

We also note that despite the promising results, the average TM 
score of the multidomain targets is still substantially lower than the 
TM score of the corresponding single-domain targets (0.747 versus 
0.893, as shown in Supplementary Table 7), suggesting that interdo-
main orientation is still a challenging issue in protein structure pre-
diction. Nevertheless, the TM score gap between single-domain and 
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Fig. 4 | D-I-TASSER modeling results in CASP15. a,b, Sum of z scores for the  
45 registered server groups in ‘regular modeling’ (a) and ‘interdomain modeling’ 
(b) sections. D-I-TASSER (registered as ‘UM-TBM’) and the public version 2.2.0 of 
the AlphaFold2 server (registered as ‘NBIS-AF2-standard’) are marked in red and 
yellow, respectively. c,d, Head-to-head comparisons between D-I-TASSER and 
AlphaFold2 (c) or Wallner (d) models are shown on the 112 individual domains 
and 22 multidomain targets, where FM and TBM domains and multidomain 
targets are colored red, blue and green, respectively. e, TM score comparisons 

of D-I-TASSER and different AlphaFold versions on the 50 FM domains and 20 
multidomain targets with released experimental structures. The height of the 
histogram indicates the mean value, and the error bar depicts s.d. f, The first 
models produced by D-I-TASSER (cyan) and AlphaFold2 (yellow) are superposed 
on the target structures (red) for 19 domains (top two rows) and 8 multidomain 
targets (bottom row), for which the TM score improvements by D-I-TASSER are 
higher than 0.15 over AlphaFold2.
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multidomain proteins by D-I-TASSER (0.146) is considerably lower than 
that of AlphaFold2 (0.292 = 0.870–0.578), reflecting the effectiveness 
of the specific domain-splitting and assembly module introduced to 
D-I-TASSER for modeling multidomain targets and explaining the lead-
ing performance of D-I-TASSER on interdomain interactions in CASP15.

Another challenge for the current version of D-I-TASSER is its per-
formance in modeling orphan proteins, which have very few homolo-
gous sequences. Supplementary Fig. 4a illustrates the correlation 
between the TM score and neff of the MSAs. For targets with neff < 1, 
D-I-TASSER achieves an average TM score of 0.67, which, although 
higher than that of most of the other groups, is significantly lower than 
its TM score (0.91) for targets with neff > 1, highlighting the dependence 
of the modeling results on the quality of MSAs. Notably, for targets 
T1122-D1 and T1131-D1 (Supplementary Fig. 4b), D-I-TASSER-predicted 
incorrect folds, with TM scores of 0.42 and 0.20, respectively, which 
can be attributed to the poor quality of the MSAs that have the lowest 
neff (=0.07 and 0.08, respectively). It is important to emphasize that this 
challenge in modeling orphan proteins is not unique to D-I-TASSER, 
as none of the CASP15 participants succeeded in generating correct 
models for these two targets; rather, it represents an ongoing chal-
lenge in obtaining sufficient co-evolutionary information to drive 
deep-learning-based structure predictions for the orphan proteins, 
despite the significant advancement of the approaches in the field.

Structure and function modeling of human proteome
Based on UniProt34, the human proteome contains over 20,000 proteins 
with lengths from 2 to 34,350 amino acids. Although 35% of human 
proteins have at least partial experimental structure information in 
the PDB, the lengths of the solved structures are generally shorter than 
the complete sequences, where only 2,437 (~12%) human proteins with 
experimental structures cover >90% of the sequence (Supplemen-
tary Fig. 5). To examine the practical use of genome-wide structure 
modeling, we applied D-I-TASSER on the sequences with lengths from  
40 to 1,500 residues, which include 19,512 individual proteins, covering 
approximately 95% of the human proteome. Based on a hybrid model 
from threading-based (ThreaDom35) and contact-based (FUpred36) 
predictions (see ‘Protocols for domain partition and multidomain struc-
tural assembly’), the 19,512 sequences contain 12,236 single-domain and 
7,276 multidomain proteins, where the latter group can be further split 
into 22,732 domains. A detailed breakdown of the human proteome data 
collection is provided in Supplementary Fig. 6 and ‘Human proteome 
dataset’. We first applied D-I-TASSER to generate full-chain models for 
all proteins in the human proteome. For the multidomain proteins, 
in addition to the full-chain models, 22,732 domain-level models are 
also created by D-I-TASSER. These result in 34,968 (=12,236 + 22,732) 
domain-level models and 19,512 (=12,236 + 7,276) full-chain-level  
final models.

Because the experimental structures are unknown for most human 
proteins, an estimated TM score (eTM score) has been designed to 
quantitatively evaluate the quality of the D-I-TASSER models. As shown 
in equation (33) in ‘Global quality estimation of D-I-TASSER structure 
predictions’, the eTM score is estimated from a linear combination of 
five factors from the significance of LOMETS threading alignments, 
the satisfaction rates of predicted contact and distance maps, the 
structural convergence of D-I-TASSER simulations and the predicted 
LDDT (pLDDT) score from AlphaFold2 first-ranked model. Based on 
the 1,492 test targets in the benchmark datasets, the eTM score had a 
Pearson correlation coefficient (PCC) of 0.79 with the true TM score to 
the native (Fig. 5a). When taking an eTM score cutoff at 0.5 for classify-
ing a model as foldable versus not, the Matthews correlation coefficient 
(MCC) on the benchmark dataset reached a maximum of 0.46 with a 
false discovery rate of 2%.

In Fig. 5b, we show the distributions of eTM scores of the D-I-TASSER 
models for both domain-level and full-chain human proteins. For the 
34,968 domain-level human proteins, 80.5% (=28,152/34,968) of the 

D-I-TASSER models are predicted to have a correct fold with eTM scores 
≥0.5, while for the 19,512 full-chain proteins, 72.8% (=14,195/19,512) are 
correctly folded by D-I-TASSER with eTM scores ≥0.5. Interestingly, two 
peaks appear at the eTM score of around 0.55 and 0.80, respectively, 
for both domain-level and full-chain human proteins (Fig. 5b), which 
probably corresponds to the two categories of hard and easy targets.

In Fig. 5c, we plot the eTM scores (outer track), target type (easy 
or hard; middle track) and neff values (inner track) of full-chain models 
located in each chromosome. We found that these indices had a nearly 
even distribution among different chromosomes, suggesting that the 
model quality is largely independent of the chromosomal location of 
a gene. For chromosome 17, however, there is a small region showing 
a significant valley of eTM scores, which corresponds to the region of 
a cluster of keratin and keratin-associated proteins. These types of 
proteins are mostly found in vertebrates37, for which the metagenom-
ics databases cannot help to supplement homologous sequences in 
MSAs, resulting in the relatively low neff values. Meanwhile, keratin fib-
ers are generally difficult to solubilize and crystallize38, and the lack of 
homologous templates renders most of the chromosome 17 sequences 
as hard targets. There are also some eTM score peaks in chromosomes 
2, 7, 11, 14 and 22, which all correspond to clusters of easy targets with 
relatively high neff values. This data reflects the impact of threading 
templates and deep learning restraints on the D-I-TASSER simulations.

In a recent study, DeepMind released the human proteome models 
built by AlphaFold2 (ref. 23). By examining the D-I-TASSER and Alpha-
Fold2 human proteome models, we found that the two programs are 
highly complementary due to the different strategies taken to model 
the structures. Figure 5d presents a head-to-head comparison of the 
pLDDT of AlphaFold2 versus the eTM score of D-I-TASSER on 19,488 
proteins that are predicted by both programs. Here like eTM score, 
pLDDT was a scale used by AlphaFold2 to evaluate the residue-level 
prediction quality with pLDDT > 0.7, indicating a correct backbone 
fold23. While around 57% (11,116) of sequences are commonly folded 
by both methods with pLDDT > 0.7 and eTM score >0.5 (Quadrant-I), 
26% (5,083) of them are foldable by either method, including 3,020 by 
D-I-TASSER only (Quadrant-II) and 2,063 by AlphaFold2 only (Fig. 5d, 
Quadrant-IV).

Of the 19,512 full-chain human proteins, 1,907 have an experimental 
structure solved in the PDB, which covers >90% of the lengths of those 
sequences (Supplementary Fig. 5), containing 1,147 single-domain 
and 760 multidomain proteins. For these proteins, D-I-TASSER 
achieved a higher TM score (0.931) than AlphaFold2 (0.916) with a P 
value = 3.17 × 10−130 (Supplementary Table 11). The relatively small TM 
score difference between D-I-TASSER and AlphaFold2 is mainly because 
most of the targets (1,659 of 1,907) are easy targets, where both pro-
grams can generate high-quality models with TM score >0.8 (that is, the 
average TM scores for these targets are 0.966 and 0.958 for D-I-TASSER 
and AlphaFold2, respectively; Supplementary Table 12). But for the 
remaining 248 relatively difficult proteins, where at least one of the 
methods performed poorly (TM score < 0.8), the TM score difference 
becomes more significant with average TM scores of 0.699 versus 0.633 
by D-I-TASSER and AlphaFold2, respectively, with a P value = 1.17 × 10−26 
by one-sided Student’s t test. Figure 5e presents a head-to-head com-
parison of D-I-TASSER and AlphaFold2, where D-I-TASSER has a higher 
TM score than AlphaFold2 in 79% of cases (=1,501/1,907). If we use a 
TM score >0.5 to denote a correct fold, the MCC is 0.52 and 0.47 for 
D-I-TASSER eTM score >0.5 and AlphaFold2 pLDDT >0.7, respectively, 
showing that both can be used as a reasonable threshold for estimating 
the foldability of the predicted models.

Following the sequence-to-structure-to-function paradigm39, 
we further applied the well-established COFACTOR protocol40 to 
annotate biological functions of the human genome based on the 
D-I-TASSER-predicted models. While protein functions are often mul-
tifold, we focus on three major aspects of ligand-binding site (LBS), 
enzyme commission (EC) and gene ontology (GO), where GO is further 
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categorized into three subaspects of molecular function (MF), bio-
logical process (BP) and cellular component (CC)41. In Supplementary 
Fig. 7 and Supplementary Table 13, we listed the top 20 most frequently 
assigned functions in each function aspect. To ensure high-confidence 
function annotations, here we only consider the prediction of human 
proteins that are foldable by D-I-TASSER with an eTM score ≥ 0.5. Over-
all, it is found that human proteins are most enriched for ‘oxidation–
reduction process’ in BP, ‘cytosol’ and ‘extracellular exosome’ in CC, 
‘metal ion binding’ in MF and ‘lysozyme’ in EC, and most frequently bind 

with ‘adenylyl imidodiphosphate’ (and thus ATP in the cellular context) 
and ‘Di-mu-sulfido-diiron’ (and thus iron–sulfur clusters in vivo). In 
Fig. 6a, we present a list of D-I-TASSER/COFACTOR function models on 
the base of chromosomes, where the top three functions are selected 
for each chromosome. A similar list of enriched functions is found for 
most chromosomes, but a clear exception occurs in chromosome 11, 
which has significant enrichment for ophthalmic-related annotations, 
such as ‘visual perception’ and ‘retina development in camera-type eye’ 
of BP, and ‘retinal’ of ligand-binding interaction. This is consistent with 
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previous experimental studies, which suggested that human chromo-
some 11 is related to various human ophthalmic diseases42,43.

In Fig. 6b,c, we present an illustrative example of the automated 
LBS prediction for acetyl-coenzyme-A (CoA) acetyltransferase (UniProt 
ID: Q9BWD1), for which the D-I-TASSER model has a high TM score of 
0.99 to the experimentally solved structure. This target has been pre-
dicted to bind with the CoA molecule, where the RMSD between the 
predicted pose of CoA and the native calculated from experimental 
structure 1wl4 is 0.74 Å, indicating a highly accurate binding position 
prediction. Among the 23 residues under 4 Å binding to the CoA mol-
ecule in the experimental structure, 22 ligand-binding residues are 
correctly predicted by COFACTOR (Fig. 6c).

Discussion
We have developed a hybrid pipeline, D-I-TASSER, to construct 
atomic-level protein structure models by integrating multiple deep 
learning potentials with iterative threading assembly simulations and 
introducing a domain splitting and assembly protocol for the auto-
mated modeling of large multidomain protein structures.

The pipeline was first tested on two large-scale benchmark 
datasets. For the dataset consisting of 500 single-domain proteins 

lacking homologous templates in the PDB, D-I-TASSER generates 
high-quality models with the average TM score 108% higher than those 
from the classic I-TASSER pipeline22, showing a significant impact of 
deep learning potentials on nonhomologous structure folding. On 
the second dataset of 230 multidomain proteins, D-I-TASSER creates 
full-chain models with an average TM score 12.9% higher than that 
from AlphaFold2 (V2.3), one of the leading deep learning methods 
in the field, with P value = 1.59 × 10−31 in a paired one-sided Student’s t 
test. Detailed data analyses demonstrated a significant advantage of 
the new domain-splitting and reassembly protocol, which allows more 
comprehensive domain-level evolutionary information derivation and 
balanced intradomain and interdomain deep learning model develop-
ments, and therefore more accurate multidomain structural assembly.

The pipeline was also tested (as ‘UM-TBM’) in the most recent 
community-wide CASP15 experiment, where D-I-TASSER achieved the 
highest modeling accuracy in both single-domain and multidomain 
structure prediction categories, with average TM scores 18.6% and 
29.2% higher than the public March-2022 v.2.2.0 of the AlphaFold2 
server run by the Elofsson Lab (registered as ‘NBIS-AF2-standard’), on 
FM domains and multidomain proteins, respectively. These results 
reinforce the potential and effectiveness of physics-based structural 
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Fig. 6 | D-I-TASSER-based function annotations for the human proteome. 
a, Histogram distribution of proteins with specific function terms of BP, 
CC, MF, EC and nonpeptide ligand, where only the three most frequently 
occurring function terms, whose names are listed below the graphs, are 
shown for each chromosome. b, A case study for acetyl-CoA acetyltransferase 

(UniProt ID: Q9BWD1) binding to a CoA molecule, with different color codes 
highlighting the structures and binding sites from experiment, D-I-TASSER and 
COFACTOR2, respectively. c, Comparison of the binding pocket that is <4 Å to 
the CoA molecule by COFACTOR2 (left) and experiment (right) for acetyl-CoA 
acetyltransferase.
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assembly simulations, when coupled with the advanced deep learning 
techniques, for high-quality protein tertiary structure predictions12,44.

As a large-scale practical application, D-I-TASSER was used to 
generate structure predictions for all 19,512 sequences of the human 
proteome, where 73% of full-chain sequences (or 81% of domains) are 
foldable using D-I-TASSER, providing information that is highly com-
plementary to the recently released human protein models built by the 
AlphaFold2 program12,23. These models are found highly relevant for 
structure-based annotation of multi-aspect functions of the proteins 
in the human genome.

Despite the success, many challenges remain in the field. For exam-
ple, despite the incorporation of DeepMSA2 with extensive metagen-
omics databases, shallow MSAs persist for some proteins, especially for 
proteins from viral genomics, where the viral rapid evolution and wide 
taxonomic distribution result in a scarcity of homologous sequences 
compared to other taxonomic groups. Moreover, this study does not 
delve into the challenge of protein–protein complex structure predic-
tion, a significant problem lacking an effective solution. Nevertheless, 
the presented pipeline demonstrated advantages in modeling chal-
lenging targets and multidomain proteins when compared to the cur-
rent state-of-the-art algorithms. These successes suggest a promising 
potential for extending the current protocol, built on the integration of 
advanced deep learning techniques with cutting-edge physics-based 
folding simulations, to address the persisting challenges in both orphan 
protein and protein complex structure prediction.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41587-025-02654-4.
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Methods
Datasets
Benchmark dataset collection. To test our methods, the single- 
domain proteins in the benchmark dataset (Benchmark-I) were col-
lected from the SCOPe 2.06 database45 (717 targets), PDB (257 targets 
released after 1 May 2022) and the FM and FM/TBM targets from CASP 
8–14 (refs. 46–50; 288 targets). Then, redundancy was removed using 
a pairwise sequence identity cutoff of <30%, and only sequences with 
lengths between 30 and 850 amino acids were kept in the benchmark 
dataset. Furthermore, discontinuous targets were removed if the 
residue indices were not consecutive or the Cα distance between two 
consecutive residues was greater than 5 Å. In total, there were 1,262 
targets consisting of 323 α proteins, 164 β proteins and 775 α/β or 
α + β proteins in the benchmark dataset, which can be classified as 211 
trivial (TBM-easy), 551 easy (TBM-hard), 383 hard (FM/TBM) and 117 
very hard (FM) targets (see ‘Deep learning module for contact map, 
distance map and HB network prediction’) based on LOMETS3 (refs. 
26,51,52). In the benchmark analysis, the ‘trivial’ and ‘easy’ targets 
were combined into one group called ‘easy targets’ (762), while the 
‘hard’ and ‘very hard’ targets were integrated into one group called 
‘hard targets’ (500).

The multidomain proteins presented in the benchmark dataset, 
known as Benchmark-II, were sourced from the PDB database53. To 
eliminate redundancy, a pairwise sequence identity cutoff of less than 
30% was used. In total, 230 targets within a length ranging from 80 to 
1,250 amino acids were chosen. These targets cover 557 domains and 
can be divided into 167 two-domain targets, 37 three-domain targets 
and 26 high-order domain (≥4 domains) targets. Notably, 43 of the 
targets within Benchmark-II contain at least one discontinuous domain. 
Here a discontinuous domain is defined as a domain that contains two 
or more segments from separate regions of the protein sequence.

Please note that when LOMETS3 threading was performed, all 
homologous templates with a sequence identity >30% to the target 
were excluded.

Human proteome dataset. The human proteome dataset contains 
20,595 proteins with lengths between 2 and 34,350 amino acids col-
lected from UniProt. To meet the scalability of D-I-TASSER (3.0), we 
only kept proteins with lengths ≤1,500. Additionally, we removed 
proteins with lengths <40 because proteins shorter than 40 amino 
acids generally form simple helix or coil structures, which are useless 
to predict. In total, 19,512 human proteins are predicted by this work. 
The resulting 19,512 (94.7%) proteins contain 12,236 single-domain pro-
teins and 7,276 multidomain proteins as classified by FUpred (v1.0)36 or 
ThreaDom35 (v1.0; see ‘Protocols for domain partition and multidomain 
structural assembly’). The 7,276 multidomain proteins can be further 
split into 22,732 domains. Consequently, in total, there are 34,968 
(=12,236 + 22,732) domains for D-I-TASSER domain-level modeling.

As defined by LOMETS (v3.0), for the 19,512 full-chain proteins, 
43%/57% were identified as easy/hard targets, while for the 34,968 
domain-level proteins, the proportion of easy targets was higher, 
with a ratio of 65:35 for easy and hard targets (Supplementary Fig. 8a). 
Meanwhile, the average neff of the MSAs for the domain-level proteins 
(501) is more than two times higher than that of the full-chain proteins 
(238; Supplementary Fig. 8b). These data suggested the advantage of 
domain-level structure predictions because more homologous tem-
plates provide a better starting conformation, and higher neff MSAs 
contain more complete co-evolution information, thus helping Alpha-
Fold2 (ref. 12), AttentionPotential and DeepPotential to create better 
restraints to assist D-I-TASSER simulations.

D-I-TASSER pipeline
The D-I-TASSER is a hybrid approach for uniform single-domain and 
multidomain protein structure prediction, coupling deep learning 
and threading assembly simulations. The pipeline consists of the 

following six steps: (1) deep MSA generation, (2) threading template 
identification, (3) inter-residue constraint prediction, (4) domain 
boundary partition and assembly, (5) iterative structure assembly sim-
ulation and (6) atomic-level structure refinement and model quality  
estimation (Fig. 1).

DeepMSA2 for MSA generation. To generate a sufficient number of 
homologous sequences in an MSA, we extended our previous MSA 
generation method, DeepMSA54 (v1.0) to DeepMSA2 (refs. 54,55; v2.0, 
https://zhanggroup.org/DeepMSA2), which uses HHblits56 (v2.0.15), 
Jackhmmer57 (3.1b2) and HMMsearch56,57 (3.1b2) to iteratively search 
three whole-genome sequence databases, including Uniclust30 (ref. 58),  
UniRef30 (ref. 58) and UniRef90 (ref. 59), and six metagenome sequence 
databases, including Metaclust60, BFD61, Mgnify62, TaraDB63, Meta-
SourceDB64 and JGIclust65 (Supplementary Fig. 9). Because the metagen-
omics databases include a lot more sequence information than normal 
genome databases, their inclusion may help improve the MSA quality. 
The detailed descriptions of these genome and metagenome databases 
can be found in Supplementary Note 1. As shown in Supplementary Fig. 9, 
DeepMSA2 contains the following three pipelines: dMSA, qMSA and 
mMSA (see details in Supplementary Note 2). The MSAs generated from 
dMSA, qMSA and mMSA are ranked by a simplified version of AlphaFold2, 
in which the template detection module is deactivated, and the embed-
ding parameter is set to one to expedite the model generation process. 
Here up to ten MSAs are obtained from the MSA generation step, and each 
of these MSAs is used as input for the simplified AlphaFold2 program, 
resulting in the creation of five structural models. Among these models, 
the highest pLDDT score is assigned as the ranking score for that specific 
MSA. Ultimately, the MSA with the highest-ranking score among all  
generated MSAs is selected as the final MSA, representing an  
optimization of the information content contributing to the folding 
process.

To quantify the diversity of an MSA, we define the number of effec-
tive sequences (neff) by

neff =
1
√L

nMSA
∑
n=1

1
1 +∑nMSA

m=1,m≠nI [Sm,n ≥ 0.8]
, (1)

where L is the length of a query protein, nMSA is the number of sequences 
in the MSA, Sm,n is the sequence identity between the mth and nth 
sequences and I[] represents the Iverson bracket, which takes the value 
I[Sm,n ≥ 0.8] = 1 if Sm,n ≥ 0.8, and 0 otherwise.

LOMETS3 pipeline for meta-server threading. LOMETS3 (https://
zhanggroup.org/LOMETS)26,51,52 is a meta-threading server for quick 
template-based fold recognition and protein structure prediction. 
It integrates the following 11 state-of-the-art threading programs: 
five contact-based threading programs, namely CEthreader66 (v1.0), 
Hybrid-CEthreader66 (v1.0), MapAlign67 (v1.0), DisCovER68 (v1.0) and 
EigenThreader69 (v1.0), and six profile-based threading programs, 
namely HHpred70 (v1.0), HHsearch71 (2.0.15), FFAS3D72 (v1.0), MUS-
TER73 (v1.0) and SparksX74 (v1.0), to help improve the quality of the 
meta-threading results. All individual threading methods are locally 
installed and run on our computer cluster to ensure the quick gen-
eration of initial threading alignments. Also, template libraries are 
updated weekly. Currently, the template library contains 106,803 
domains/chains with a pairwise sequence identity of <70%. For a pro-
tein chain that consists of multiple domains, both the whole-chain 
and individual domain structures are included in the library. Due to its 
speed and accuracy, LOMETS3 is used as the initial step of D-I-TASSER 
to identify structural templates and generate query-template 
alignments.

The LOMETS3 pipeline consists of the following three consecutive 
steps: generation of sequence profiles, fold recognition through its 
component threading programs and template ranking and selection.

http://www.nature.com/naturebiotechnology
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Generation of sequence profiles. Starting from a target protein 
sequence, the DeepMSA2 (refs. 54,55) method (see ‘LOMETS3 pipe-
line for meta-server threading’) is used to generate deep MSAs by 
iterative sequence homology searches through multiple sequence 
databases. The deep profiles are calculated from the MSAs in the form 
of sequence profiles or profile hidden Markov models (HMMs), which 
are prerequisites for the different individual threading programs. The 
MSAs are also used to predict residue–residue contacts, distances and 
hydrogen bond (HB) geometries that are used by the five contact-based 
threading programs and template ranking.

Fold recognition through the component threading programs. The pro-
files generated in the first step are used by the 11 LOMETS3 threading 
programs to identify template structures from the template library, 
where profiles are prebuilt for each template.

Template ranking and selection. For a given target, 220 templates are 
generated by the 11 component servers, where each server generates 
20 top templates that are sorted by their z scores for each threading 
algorithm. The top ten templates are finally selected from the 220 
templates based on the following scoring function that integrates 
the z score—a score representing confidence in each method—and 
the sequence identity between the identified templates and query 
sequence:

score (i, j) = conf (j) × zscore (i, j)
Z0 ( j)

+ seqid (i, j) , (2)

where seqid (i, j) is the sequence identity between the query and the 
ith template for the jth program, and conf (j) is the confidence score 
for the jth program, which was calculated by determining the average 
TM scores over the first templates to the native structures on a training 
set of 243 nonredundant target proteins51. The detailed definition of z 
score (i, j) can be found in Supplementary Note 3, which includes three 
score terms from contacts, distances and HB geometries predicted by 
AttentionPotential (v1.0) and DeepPotential (v1.0), and one sequence 
profile score term from the original profile-based threading methods. 
z0 (j) is the z-score cutoff for defining good/bad templates for the jth 
program, which was determined by maximizing the MCC for distin-
guishing a good template (with a TM score ≥0.5) from a bad template 
(TM score <0.5) on the same training set. As a result, the parameters 
z0 (j) (and conf (j)) are 6.1 (0.495), 7.8 (0.478), 6.0 (0.472), 22.0 (0.471), 
3.8 (0.471), 8.5 (0.461), 6.0 (0.456), 6.9 (0.445), 46.0 (0.440), 6.0 (0.437) 
and 83.0 (0.389) for Hybrid-CEthreader, SparksX, CEthreader (https://
zhanggroup.org/CEthreader), HHsearch, MapAlign, MUSTER (https://
zhanggroup.org/MUSTER), MRFsearch, DisCovER, FFAS3D, Eigen-
Threader and HHpred, respectively.

Based on the quality and number of threading alignments from 
LOMETS3, protein targets can be classified as ‘trivial’, ‘easy’, ‘hard’ or 
‘very hard’. The classification of targets was considered in the contact 
prediction and REMC simulation sections of D-I-TASSER to train the 
parameters and weights with regard to different target types. The 
detailed procedure of target classification is shown as follows:

For each protein target, we first select the top template for each 
of the 11 threading methods in LOMETS3. Based on the selected tem-
plates, za, the average normalized z score (divided by z0) is calculated 
for the 11 threading methods. We further calculate the pairwise TM 
scores among the 11 templates selected by the 11 threading methods. 
There are 55 (= C211 = 11 × 10/2) distinct template–template pairs and 
corresponding TM scores. We define TM1, TM2, TM3 and TM4 as the 
average TM scores over the quartiles of the template pairs ranked by 
their TM scores (beginning with the top ranker). Thus, we get a set of 
nine scores, that is, S = {za, TM1, TM2, TM3, TM4, za × TM1, za × TM2, 
za × TM3, za × TM4}. Based on set S, the target can be classified by the 
following rule:

Target is classified as

⎧⎪⎪
⎨⎪⎪
⎩

Trivial, if |{s ∈ S, |, s > 1.8 × cut2 (s)}| ≥ 8

Easy, else if|{s ∈ S|s > 1.0 × cut2(s)}| ≥ 7

Very hard, else if|{s ∈ S|s < 1.0 × cut1(s)}| ≥ 6

Hard, otherwise

,

(3)

where cut1 (S) = {0.620, 0.273, 0.250, 0.216, 0.185, 0.151, 0.137, 0.096, 
0.093} and cut2 (S) = {1.052, 0.508, 0.396, 0.350, 0.339, 0.353, 0.279, 0.239, 
0.209}. Here |{…}| means the number of items in the set {&hellips;}.

To simplify the logic of the analyses in the manuscript, we rede-
fined target classification as the following two groups of targets: easy 
targets and hard targets, where easy targets here include both ‘trivial’ 
and ‘easy’ types, while hard targets are a combination of both the ‘hard’ 
and ‘very hard’ groups. However, for the parameter determination, we 
still keep the four classification groups.

Deep learning module for contact map, distance map and HB net-
work prediction. The deep learning module contains DeepPotential, 
AttentionPotential, AlphaFold2 and five contact predictors, which are 
designed for predicting spatial restraints for use in D-I-TASSER folding 
simulation, including contacts, distances and HB networks.

First, the definitions of contact, distance and HB are shown in the 
following sections.

Inter-residue contact. A contact is defined as a pair of residues where the 
distance between their Cα or Cβ atoms is less than or equal to 8 Å, pro-
vided that they are separated by at least five residues in the sequence. 
The long-, medium- and short-range contacts are defined by sequence 
separation |i − j| ≥24, 23 ≥ |i − j| ≥ 12 and |i − j| ≤11, respectively.

Inter-residue distance. A distance is defined as the Cα–Cα or Cβ–Cβ  
distance between a pair of residues.

Inter-residue HB. The HBs used in D-I-TASSER are defined as the inner 
cross products of two local Cartesian coordinate systems formed by 
a residue pair i and j. As shown in Supplementary Fig. 10, for residue i, 
three unit direction vectors, Ai, Bi and Ci, are used to define the local 
coordinate system to describe the hydrogen direction. Here Bi is the 
direction vector of the plane formed by three neighboring atoms, 
Cαi − 1, Cαi and Cαi + 1, while Ai and Ci are mutually perpendicular vectors 
located in the plane. The equations of Ai, Bi and Ci are shown in equa-
tions (16–18), respectively. For two residues i and j, we can define the 
AA, BB and CC as the inner product of Ai/Aj, Bi/Bj and Ci/Cj, respectively. 
AA, BB and CC are used to represent the HBs between two residues, 
which are helpful to correct the secondary structures in the modeling 
simulations. The equations of AA, BB and CC are shown in equations 
(19–21), respectively.

Second, we list the predictors used in the deep learning module.

DeepPotential pipeline. DeepPotential pipeline is used to predict con-
tacts, distances and HB networks. In DeepPotential (https://zhanggroup.
org/DeepPotential), a set of co-evolutionary features are extracted from 
the MSA obtained by DeepMSA2. The raw coupling parameters from 
the pseudo-likelihood maximized (PLM) 22-state Potts model and the 
raw mutual information (MI) matrix are the two major two-dimensional 
features in DeepPotential. Here the 22 states represent the 20 standard 
amino acids, the nonstandard amino acid type and the gap state. Here 
the PLM feature minimizes the following loss function:

LPLM = −
L
∑
l=1

N
∑
n=1
log

exp(ei(Xn,i)+∑
L
j=1, j≠i Pi, j(Xn,i ,Xn, j))

∑Q
q=1 exp(ei(q)+∑

L
j=1, j≠i Pi, j(q,Xn, j))

+λsingle
L
∑
i=1
‖ei‖

2
2 + λpair

L
∑
i, j=1
i≠j

‖Pi, j‖
2
2

, (4)
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where X is the N by L matrix representing the MSA. e ∈ RL×Q  and 
P ∈ RL×L×Q×Q are the field and coupling parameters of the Potts model, 
respectively; λsingle = 1 and λpair = 0.2 × (L − 1) are the regularization coef-
ficients for e and P; and L is the sequence length. The MI feature of  
residue i and j is defined as follows:

Mi, j (q1,q2) = fi, j (q1,q2) ln
fi, j (q1,q2)
fi (q1) fj (q2)

(5)

Here fi (q1) is the frequency of a residue type q1 at position i of the MSA, 
fi,j (q1,q2) is the co-occurrence of two residue types q1 and q2 at positions 

i and j.
For a given sequence, s, the corresponding parameters for each 

residue pair in the PLM and MI matrices, Pi,j (si, sj) and Mi,j (si, sj), are 
also extracted as additional features that measure query-specific 
co-evolutionary information in an MSA, where sj indicates the residue 
type of position i of the query sequence. The field parameters ei and the 
self-mutual Mi,j information are considered as one-dimensional features, 
incorporated with HMM features. The one-hot representation of the MSA 
and other descriptors, such as the number of sequences in the MSA, are 
also considered. The one-dimensional features and two-dimensional 
features are fed into deep convolutional neural networks separately, 
where each of them is passed through a set of ten one-dimensional and 
two-dimensional residual blocks, respectively, and are then tiled together. 
The feature representations are considered as the inputs of another fully 
residual neural network containing 40 2D residual blocks, which output 
several inter-residue interaction terms (Fig. 1a, left, column 2).

AttentionPotential pipeline. AttentionPotential pipeline is an improved 
model that can predict various inter-residue geometry potentials, includ-
ing contacts, distances and HB networks. In the AttentionPotential model 
(Fig. 1a, left, column 1), the co-evolutionary information is directly 
extracted using the attention transformer mechanism that can model 
the interactions between residues instead of the precomputed evolution-
ary coefficients used in DeepPotential. Starting from an MSA minit

si , with 
S aligned sequences and L positions, the InputEmbedder module was 
applied to get the embedded MSA representation msi and the pairwise 
representation zij. Additionally, the MSA embeddings and attention maps 
from MSA transformer, that is, mesm

si  and zesmij , were linearly projected and 
added to msi and zij, respectively. Please note that mesm

si  is the MSA repre-
sentation of the last hidden layer and zesmij  stacks the attention maps of 
each hidden layer in the MSA transformer. The obtained representations 
are then fed into the Evoformer model consisting of 48 Evoformer stacks. 
The equations that define the process are as follows:

m, z = ∅e (minit) (6)

mesm, z esm = ∅t (minit) (7)

m̂esm, ẑesm = ∅m (mesm) , ∅z (z esm) (8)

m̂, ẑ = ∅Evo (m + m̂esm, z + ẑesm) , (9)

where ∅e and ∅t are the InputEmbedder module and MSA transformer, 
respectively. ∅m and ∅z are the projectors for mesm

si and zesmij , respectively. 
∅Evo defines the Evoformer, which is the backbone network of Atten-
tionPotential. The inter-residue geometry prediction was based on ̂zij 
in the form of multitask learning. Each of the geometry terms is pre-
dicted by its separate projection of ̂zij, followed by a softmax layer, 
which can produce a multinomial distribution for each residue pair.

We implemented and trained AttentionPotential with PyTorch 
(1.7.0). For the MSA transformer, the weights are initialized with the 
pretrained model75 and kept fixed during the training and inference. To 
make the deep learning model trainable on limited resources, that is, a 
single V100 GPU, the channel sizes of pair and MSA representations in 

Evoformer blocks were set to 64. The number of heads and the channel 
size in MSA row- and column-wise attention were set to 8. Please note 
that the row- or column-wise dropout layers were not implemented as 
the model is considered at a small scale.

The Cα–Cα contacts, Cβ–Cβ contacts, Cα–Cα distances, Cβ–Cβ dis-
tances and Cα-based HB network geometry descriptors between 
residues are considered as prediction terms. The contact, distance, ori-
entations and HB geometry values are discretized into binary descrip-
tions, and the neural networks were trained using cross-entropy loss.

AlphaFold2 pipeline. The AlphaFold2 pipeline was used to predict contact 
maps and distance restraints for D-I-TASSER across all benchmarks pre-
sented in this study. The AlphaFold2 method was originally developed by 
DeepMind, where an end-to-end network architecture is implemented 
to predict the 3D structure of monomeric proteins from an MSA and 
homologous templates12. In D-I-TASSER, a slightly modified version of 
the AlphaFold2 program has been used to predict the structural models 
associated with the Cβ–Cβ distance restraints, in which the default input 
MSA is replaced by the DeepMSA2 MSA, and the default templates are 
replaced by LOMETS3 templates. Finally, AlphaFold2 generates five 
models. The distance output from the model with the highest pLDDT 
score is used for guiding D-I-TASSER folding simulation together with 
distance restraints from DeepPotential and AttentionPotential pipelines.

Five contact predictors. In addition to contact predictions from Atten-
tionPotential, DeepPotential and AlphaFold2, D-I-TASSER also uses 
contact map information from TripletRes76 (v1.0), ResTriplet77 (v1.0), 
ResPRE66 (v1.0), ResPLM77 (v1.0) and NeBcon78 (v1.0), the methods of 
which are outlined in Supplementary Note 4.

Finally, we show the selection strategies for contact, distance and 
HB in the following sections.

Contact selection and reranking. Due to the variation of scoring 
schemes used by different contact predictors, we chose different con-
fidence score cutoffs for different predictors that correspond to a 
contact precision of at least 0.5 for different ranges, including long-, 
medium- and short-range contacts with sequence separations |i − j| ≥24, 
23 ≥ |i − j| ≥12 and |i − j| ≤11, respectively. For each individual contact 
predictor p, we first rank all of the residue–residue pairs in descending 
order of confidence scores predicted by the predictor. A residue–resi-
due pair (i, j) is selected as the predicted contact if Ionf p (i, j) > conf pcut(r), 
where confp (i, j) is the confidence score of the residue–residue pair  
(i, j) predicted by predictor p, and confpcut(r)  is the confidence score 
cutoff for the predictor p at range type r ∈ (short, medium and long 
range) or Lc(p) < Lcut(p) where Lc(p) is the currently selected number of 
contacts by predictor p and Lcut(p) is the cutoff for the minimum number 
of selected contacts by predictor p. It is important to note that all the 
confidence cutoffs and parameter sets were determined on a separate 
set of 243 training proteins—Lcut(p) = L for all predictor p; confpcut (short 
range) = 0.310, 0.418, 0.647, 0.809, 0.607, 0.604, 0.483 and 0.512; confpcut 
(medium range) = 0.328, 0.433, 0.622, 0.789, 0.581, 0.598, 0.626 and 
0.652; confpcut (long range) = 0.308, 0.422, 0.678, 0.806, 0.654, 0.652, 
0.849 and 0.906 for AttentionPotential, DeepPotential, TripletRes, 
ResTriplet, ResPRE, ResPLM, NeBconB and NeBconA, respectively.

After the contacts have been selected from each contact predictor, 
we normalize the contact prediction results from different predictors. 
For each of the predicted contacts (i, j), the new normalized confidence 
scores over different contact predictors are calculated as follows:

Ui, j =
1
n ×

n
∑
p=1

wp (i, j) (10)
wp (i, j) =

{
2.5 × [1 + conf p(i, j) − conf pcut(r)] × Fw, if predictor p selects out (i, j)

0, else
,

(11)
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where n is the number of predictors. confp (i, j) is the contact confidence 
score of the residue–residue pair (i, j) predicted by predictor p, and 
confpcut (r) is the contact confidence score cutoff for predictor p at range 
type r ∈ (short, medium and long range), which is given above. 
Fw = 0.62, 1.25, 6.25 and 5 for trivial, easy, hard and very hard target 
types, respectively, when neff > 50, while Fw = 0.62, 1.5, 3 and 3.75 accord-
ingly, when neff < 50.

Distance selection. For the Cα–Cα distances and Cβ–Cβ distances, four 
upper thresholds, including 10 Å, 13 Å, 16 Å and 20 Å, were used. Con-
sidering that both AttentionPotential and DeepPotential tend to have 
a higher confidence for distance models with shorter distance cut-
offs, four sets of distance profiles for each method were generated 
with distance ranges from [2,10], [2,13], [2,16] and [2,20] Å, where the 
four ranges were divided into 18, 24, 30 and 38 distance bins, respec-
tively; only the distance profiles from the lower distance cutoffs were 
selected, that is, distances from [2–10) Å were selected from model set 1,  
distances from [10–13) Å from set 2, [13–16) Å from set 3 and [16–20] Å  
from set 4. In contrast, AlphaFold2 predicted the Cβ–Cβ distances rang-
ing from 2 Å to 22 Å, and the distances were divided into 64 bins. Only 
one distance restraint is selected from the AlphaFold2, AttentionPo-
tential and DeepPotential models for a given pair (i, j) based on the 
higher value of

Si,j =
1

1 + σi, j − 0.4 ×∑n
k=1Pi, j (k) − 0.2 ×maxk (Pi, j (k))

, (12)

where Pi,j (k) is the probability for a residue pair (i, j) located in the kth 
bin, n is the number of bins, σi,j is the s.d. of the distance distribution 
for a residue pair (i, j). After the selection of Si,j for each (i, j) between 
AlphaFold2, AttentionPotential and DeepPotential models, a second 
round of selection is performed to select the set of distance restraints 
that have the highest value of Si,j. For trivial and easy targets, the top 
0.5L, 2L, and 5L distances are selected from the short (separation ≥ 3), 
medium and long range, respectively, while for hard and very hard 
targets, the top 0.25L, 1L and 2.5L distances are selected from the short 
(separation ≥ 3), medium and long range, respectively. The combined 
distances were then converted into a negative logarithm-style function 
used as the distance potential (equation (27)).

HB selection. For HBs, the AttentionPotential and DeepPotential pipe-
lines predict the angles between the corresponding unit vectors of 
residue i and residue j (that is, Ai and Aj) if the distance between i and j 
is below 10 Å, which is assessed using the sum of the predictive probabil-
ity below the cutoff (10 Å). Please note that for each residue pair (i, j), 
only one set of HBs will be selected from AttentionPotential or Deep-
Potential, based on whichever has the largest sum of the predictive 
probability. Finally, the top 5L predicted angles are selected and sorted 
by the predicted probabilities. The predicted probability distribution 
of angles is then converted into an HB energy potential with a similar 
form as the distance energy.

Distance assessment measures. To assess the accuracy of the deep 
learning distance predictions, we used the measure MAEn as the mean 
absolute distance error between the top k × L predicted distances and 
the corresponding distances calculated from the experimentally solved 
structures. The equation is as follows:

MAEn =
1
kL

kL
∑
(i, j)

||d
pred
i, j − d expi, j

|| , (13)

where dexpi,j  is the Cα–Cα (or Cβ–Cβ) distance between residue i and j in the 
experimental structure, and dpredi,j  is the predicted Cα–Cα (or Cβ–Cβ) 
distance between residue i and j predicted by AlphaFold2, Attention-
Potential or DeepPotential. Because AlphaFold2 (Cβ–Cβ), 

AttentionPotential (Cα–Cα and Cβ–Cβ) or DeepPotential (Cα–Cα and 
Cβ–Cβ) predict the probability distribution for each residue pair (i, j), 
the distance distributions were first ranked by their peak probability 
(only distances <20 Å were considered, or 22 Å for AlphaFold2). Then, 
the top k × L-ranked distance distributions were used to calculate MAEn, 
where dpredi,j  was estimated as the middle value of the bin where the 
highest probability was located. In particular, we used the top 5L-ranked 
long-range (|i − j| > 23) Cβ–Cβ distances from the combined AlphaFold2, 
AttentionPotential and DeepPotential models to calculate MAEn 
because we found it had the maximal PCC with TM scores from the 
predicted models.

To quantify how well the predicted models fit with the predicted 
distances from the deep learning models, we defined another measure 
MAEm as the mean absolute distance error between the top k × L (where 
L is the protein length) predicted distances and the corresponding dis-
tances calculated from the D-I-TASSER models. The equation is as follows:

MAEm = 1
kL

kL
∑
(i, j)

||dmodi, j − dpredi, j
|| , (14)

Similarly to MAEn, the top 5L-ranked long-range (|i − j| > 23) Cβ–Cβ 
distances from the combination of AlphaFold2, AttentionPotential and 
DeepPotential were used to calculate the MAEm. dmodi,j  is the Cβ–Cβ  
distance between residues i and j in the predicted model structure.

Protocols for domain partition and multidomain structural assembly.  
To model multidomain proteins, we introduced a new domain partition 
and structural assembly module into the D-I-TASSER pipeline. In con-
trast to our previous domain handling module used in CASP14, which 
attempted to dock the domain-level models into full-chain models, the 
new module creates full-chain models directly from the full-chain level 
D-I-TASSER assembly simulations under the guidance of the composite 
domain-level and whole-chain-level restraints from LOMETS and deep 
learning models. The new domain partition and structural assembly 
module consists of the following five steps: domain boundary predic-
tion, domain-level template and restraint prediction, full-chain level 
restraint collection, full-chain level MSA collection and spatial restraint 
creation and full-chain level D-I-TASSER structural assembly.

Domain boundary prediction. The domain boundaries of the query 
sequence are predicted by two complementary programs35,36.

First, ThreaDom (https://zhanggroup.org/ThreaDom) is a template- 
based algorithm for protein domain boundary prediction derived 
from threading alignments. Given a protein sequence, ThreaDom 
first threads the target through the PDB library to identify protein 
templates with similar structural folds. A domain conservation score 
(DCS) is then calculated for each residue, which combines informa-
tion from the template domain structures, terminal and internal gaps 
and insertions. Finally, the domain boundary information is derived 
from the DCS profile distribution. ThreaDom is designed to predict 
both continuous and discontinuous domains. The templates used in 
ThreaDom are obtained using LOMETS3 (see ‘LOMETS3 pipeline for 
meta-server threading’) with the full-chain query sequence as input.

Second, FUpred (https://zhanggroup.org/FUpred) is a newly 
developed domain prediction method that uses a recursive strategy 
to detect domain boundaries based on predicted contact maps and 
secondary structure information. The core idea of the algorithm is 
to predict domain boundary locations by maximizing the number of 
intradomain contacts while minimizing the number of interdomain 
contacts from the contact maps. FUpred achieved state-of-the-art per-
formance on domain boundary detection, especially for discontinuous 
domains36. The contact map used in FUpred is predicted by the deep 
learning module (see ‘Deep learning module for contact map, distance 
map and HB network prediction’) with the full-chain query sequence 
and deep MSA as input.
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Depending on the LOMETS definition of the target class, the final 
boundary models are taken from ThreaDom (if the query is an easy 
target) or FUpred (if the query is a hard target).

Domain-level threading and restraint generation. After domain bounda-
ries have been detected, the full-chain query sequence is divided into 
domain-level sequences. Subsequently, the sequence of each individual 
domain is input to DeepMSA2 for domain-level MSA construction, to 
LOMETS3 for domain-level template detection and to the deep learning 
module for domain-level spatial restraint prediction.

Full-chain level MSA collection and spatial restraint creation. The 
domain-level MSAs and the initial full-chain MSA from DeepMSA2 are 
used for assembling a new checkerboard-style full-chain MSA, in which 
the full-chain homologous sequences in the initial full-chain MSA are 
first put into the new MSA, followed by the placement of domain-level 
sequences of each domain with gap padding to all other domains 
(Fig. 1b). This newly assembled MSA is again fed to the deep learning 
module to predict a new set of full-chain-level spatial restraints (see 
‘Deep learning module for contact map, distance map and HB network 
prediction’). The final restraint set consists of the full-chain-level deep 
learning restraints plus the restraints converted from domain-level 
deep learning restraints with reordered residue indexes.

Full-chain level template collection. The domain-level threading tem-
plates are assembled into ‘full-chain’ templates using DEMO2 (ref. 79; 
v2.0, https://zhanggroup.org/DEMO). Here starting from domain-level 
LOMETS templates, DEMO2 identifies a set of ten analogous global 
template structures that cover as many domains as possible from a 
nonredundant multidomain protein structure library by matching 
each domain template to the multidomain template structures using 
TM-align80 (22 August 2019). A limited-memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS) optimization is then performed starting 
from initial global templates to detect each domain’s optimal trans-
lation vectors and rotation angles. The optimization is guided by a 
comprehensive energy function that includes a knowledge-based 
potential, a template-based potential and the interdomain spatial 
restraints from the deep learning module. The translation vectors and 
rotation angles with the lowest energy are selected to construct a set 
of assembled ‘full-chain’ templates. The final template set consists of 
the DEMO2 assembled full-chain templates plus the full-chain-level 
LOMETS threading templates.

Multidomain structure construction by D-I-TASSER. Starting with 
the full-chain templates, full-chain multidomain structural mod-
els are reassembled D-I-TASSER simulations, which are guided 
by the above-collected full-chain spatial restraints. Technically, 
the domain-level structural folding is mainly controlled by the 
domain-level threading and deep learning modeling, while the inter-
domain orientations are guided by the full-chain-level deep learning 
restraints and global threading alignments, together with the inherent 
knowledge-based D-I-TASSER force field. A detailed description of the 
unified D-I-TASSER structural assembly and model selection for both 
single-domain and multidomain proteins is given in Methods (see 
‘REMC protocol in D-I-TASSER’, ‘D-I-TASSER force field’, ‘Model selec-
tion and atomic structure generation’ and ‘Global quality estimation 
of D-I-TASSER structure predictions’).

REMC protocol in D-I-TASSER. D-I-TASSER is an extension of the 
established I-TASSER pipeline15,22 for REMC protein structure assem-
bly simulations. The initial conformations used in the REMC simula-
tion came from LOMETS3 threading templates, together with the 
full-length models built by AlphaFold2 and DeepFold (v1.0, https://
zhanggroup.org/DeepFold)81 with the spatial restraints. In the initial 
conformation generation step, a total of ten full-length models are 

created by DeepFold L-BFGS folding system using spatial restraints 
collected from LOMETS3 templates (see ‘LOMETS3 pipeline for 
meta-server threading’) and predicted by the DeepPotential or Atten-
tionPotential (see ‘Deep learning module for contact map, distance 
map and HB network prediction’). To assist the L-BFGS folding pro-
cess, the probabilities of distance terms for each pair of residues are 
converted into smooth potentials for the gradient-descent-based 
protein folding system. The negative log of the raw probability his-
togram is then interpolated using a cubic spline to derive the poten-
tials. For distance probability histogram of residue pair i and j, the 
probability, P(i, j)dis, is a fusion probability combining the raw prob-
ability P(i, j)dpdis predicted from DeepPotential (or AttentionPotential) 
and the statistical probability P(i, j)temdis  derived from LOMETS3 top  
n ranked templates with alignment coverages >0.5 for ‘easy’ targets 
and alignment coverages >0.6 for ‘hard’ targets. Here n is 50 for an 
‘easy’ target, and n is 30 for a ‘hard’ target. The fusion probability 
P(i, j)dis can be calculated as follows:

P (i, j)dis = wP (i, j)
dp
dis + (1 −w)P(i, j)templatedis , (15)

where w is a weight and equals to 0.8. Five models were generated 
using DeepFold, with varying random seeds, using restraints from 
either DeepPotential or AttentionPotential combined with LOM-
ETS3 templates. Thus, a total of 15 full-length models, including five 
AlphaFold2 models, five AttentionPotential-based models and five 
DeepPotential-based models, are collected from the deep learning 
module. These models are merged with 220 top-ranked LOMETS3 
threading templates to provide initial conformations for D-I-TASSER 
REMC folding simulations.

To reduce the conformational search space, only the Cα atom of 
each residue is treated explicitly by restricting the Cα trace to a 3D 
underlying cubic lattice system with a lattice grid of 0.87 Å (Supplemen-
tary Fig. 11a). The backbone length of the structural model is allowed 
to fluctuate from 3.26 Å to 4.35 Å (that is, the actual distance from Cα(i) 
to Cα(i + 1) is required to be in the range [3.26 Å, 4.35 Å] in Supplemen-
tary Fig. 11a) to preserve sufficient flexibility for the conformational 
movements and geometric fidelity of the structure representation. 
Therefore, 312 basic vectors can be used to represent the virtual and 
reasonable Cα–Cα bonds. The average vector length is about 3.8 Å, 
consistent with the value of real proteins. Furthermore, the reasonable 
Cα–Cα bond angle is restricted to the experimental range [65°, 165°] to 
reduce the configurational entropy. Please note that all of the allowable 
Cα–Cα bond combinations are precalculated.

The positions of three consecutive Cα atoms define the local coor-
dinate system, which in turn is used to determine the remaining two 
interaction units—the β carbon (Cβ; except glycine) and the center of 
side-group heavy atoms (SG; except glycine and alanine). As shown 
in Supplementary Fig. 10b, let Vi − 1 be the vector from Cα(i − 1) to Cα(i) 
and Ui − 1 be the unit vector for Vi − 1. Thus, the local Cartesian coordinate 
system can be represented in the form of

Ai, = exi =
Ui−1 + Ui
|Ui−1 + Ui|

(16)

Bi = eyi =
Ui−1 × Ui
|Ui−1 × Ui|

(17)

Ci = ezi =
Ui−1 − Ui
|Ui−1 − Ui|

. (18)

Here Bi is also the direction of the HB. Furthermore, we can use three 
inner products, AA, BB and CC (see below), to represent the hydrogen 
bonds.

AA = Ai ⋅ Aj (19)
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BB = Bi ⋅ Bj (20)

CC = Ci ⋅ Cj. (21)

Let Cβ(i) be the position of the ith Cβ atom, and SG(i) be the posi-
tion of the ith center of the side-group heavy atoms. Therefore, the 
corresponding vectors relative to Cα(i) can be represented as follows:

VCβi (AAi) = xCβ (AAi) × exi + yCβ (AAi) × eyi + zCβ (AAi) × ezi (22)

VSGi (AAi) = xSG (AAi) × exi + ySG (AAi) × eyi + zSG (AAi) × emzi, (23)

where the parameters xCβ (AAi), yCβ (AAi), zCβ (AAi), xSG(AAi), ySG(AAi) and 
zSG(AAi) are amino acid type-dependent statistical values that were 
extracted from the PDB.

The structure reassembly in D-I-TASSER is conducted by REMC 
simulations, which make use of the following six types of conforma-
tional movements (Supplementary Fig. 11c): (1) two-bond vector walk, 
(2) three-bond vector walk, (3) four-bond vector walk, (4) five-bond 
vector walk, (5) six-bond vector walk and (6) N- or C-terminal random 
walk. To speed up the simulations, the two-bond and three-bond con-
formational changes—referred to as movements (1) and (2)—for any 
given distance vector within the moving window are precalculated 
and rapidly applied using a look-up table. Movements (3)–(5) can also 
be performed rapidly by recursively conducting combinations of 
movements (1) and (2).

Following the standard REMC protocol, there are n simulation 
replicas that are implemented in parallel, with the temperature of the 
ith replica being

Ti = Tmin(
Tmax
Tmin

)
i−1
n−1
, (24)

where Tmin and Tmax are the temperatures of the first and the last  
replicas, respectively. n ∈ [40, 80] , Tmin ∈ [1.6 k−1B , 1.98 k−1B ]  and 
Tmin ∈ [66 k−1B , 106 k−1B ], depending on the protein size. Larger proteins 
have more replicas and higher temperatures. These parameter settings 
can result in an acceptance rate of ~3% for the lowest-temperature 
replica and ~65% for the highest-temperature replica for different-sized 
proteins.

As shown in Supplementary Fig. 11d, after every 200 × L local con-
formational movements, where L represents the protein length, a 
global swap movement between each pair of neighboring replicas is 
attempted following the standard Metropolis criterion with a probabil-

ity of min (1, e
(Ei−Ej)(

1
kTi

− 1
kTj

)
), where k is a constant and the temperature 

distribution is shown in equation (24). This parameter setting results 
in an approximate 40% acceptance rate for the swap movement 
between each neighboring replica.

D-I-TASSER force field. The D-I-TASSER simulations are governed  
by different energy terms that achieve various effects on the genera-
tion of native-like states. The overall force field used in D-I-TASSER is 
as follows:

E = w1E
Cα
Sdist +w2E

Cβ
Sdist +w3ESHB +w4E

Cα
Scon +w5E

Cβ
Scon

+w6EShortdist +w7ELongdist + w8E
Cα
Tcon +w9E

SG
Tcon

+w10ESGburial +w11E
Cα
sec +w12Ecrumpling +w13E

frag
sec

+w14ECα−SGpair +w15ESGpair +w16E
Cα
P +w17ECαNP +w18EHB

+w19ECαcorr +w20ESGvol +w21E
SG
mvol +w22E

Cα
Spair1−5 +w23Ecprof +w24ENcon

(25)

There are 24 energy terms in the D-I-TASSER force field, which 
can be categorized into seven energy groups (or E groups), including  
(E group 1) deep learning sequence-based spatial geometric restraints, 
(E group 2) threading template-based restraints, (E group 3) burial 
interaction restraints, (E group 4) secondary structure-based restraints, 
(E group 5) statistical pairwise potentials, (E group 6) HB restraints and 
(E group 7) statistical restraints from the PDB library. Below, we explain 
in detail the newly developed E group 1 terms built on the deep learn-
ing restraints, while the other six E groups extended from the classical 
I-TASSER force fields are explained in Supplementary Note 5.

E group 1: deep-learning sequence-based spatial geometric 
restraints
This group, including distance restraints, HB restraints and contact 
restraints predicted, is newly implemented to guide the folding simula-
tions based on deep learning predictions in D-I-TASSER.

Distance restraints. Sequence-based distances are predicted from 
AlphaFold2, AttentionPotential and DeepPotential; only one distance 
restraint is selected from the AlphaFold2, AttentionPotential and Deep-
Potential models for a given pair (i, j) based on the higher value of 
Si,j score defined in equation (12). A set of high-confidence distance 
restraints is selected by sorting the Si,j values (see ‘Distance selection’). 
The selected distances were converted into a negative logarithm-style 
function used as the distance potential as described below:

ECα/CβSdist =
L−1
∑
i=1

L
∑
j>i
ECα/CβSdist (dij) (26)

ECα/CβSdist (dij) = − log(
Pij (dij) + Pnij

2Pnij
) , (27)

where dij is the distance between residue pair i and j, which follows a 
predicted probability distribution Pij. Pij(dij) is the probability that the 
distance is located at dij, and Pnij is the probability of the last distance 
bin below the upper threshold (that is, 10 Å, 13 Å, 16 Å and 20 Å as 
described in the ‘Distance selection’). The illustration of the distance 
restraints is shown in Supplementary Fig. 12a.

HB restraints. The predicted probability distribution of angles is con-
verted into an energy potential with a similar form as the distance 
energy, where the potential is described as follows:

ESHB =
L−2
∑
i=2

L−1
∑
j>i
EAASHB (θ

AA
ij ) +

L−2
∑
i=2

L−1
∑
j>i
EBBSHB (θ

BB
ij ) +

L−2
∑
i=2

L−1
∑
j>i
ECCSHB (θ

CC
ij ) (28)

EAA/BB/CCSHB (θAA/BB/CCij ) = − log(
Pij (θAA/BB/CCij ) + ε

Pnij + ε
) , (29)

where θAA/BB/CCij  is the hydrogen angle between residue pair i and j, that 
is, the angle between vector Ai/Bi/Ci and Aj/Bj/Cj, which follows a prob-
ability distribution Pij predicted by AttentionPotential or DeepPoten-
tial, Pij(θAA/BB/CCij ) is the probability that the angle is located at θAA/BB/CCij  
and ε =1.0 × 10−4 is a pseudo count introduced to avoid the logarithm 
of zero. The illustration of the HB restraints is shown in Supplementary 
Fig. 12b. Here for each residue pair (i, j), only one set of HBs will be 
selected from AttentionPotential or DeepPotential, based on whichever 
has the largest sum of the predictive probability under the threshold 
of 10 Å (see ‘HB selection’).

Contact restraints. This energy term was developed to account for the 
restraints from the predicted contacts, where for each residue pair (i, j),  
the predicted contacts from different deep learning predictors are 
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combined using equations (10) and (11) as described in ‘Deep learning 
module for contact map, distance map and HB network prediction’. We 
define it as the three-gradient contact potential, which has the following  
form for both Cα and Cβ atoms:

ECα/CβScon =
L−1
∑
i=1

L
∑
j>i
ECα/CβScon (dij) (30)

ECα/CβScon (dij) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

−Uij, dij < dcut

− 1
2
Uij [1 − sin (

dij−(
dcut+D

2
)

D−dcut
π)] , dcut ≤ dij < D

1
2
Uij [1 + sin (

dij−(
D+80
2

)

(80−D)
π)] , D ≤ dij < 80Å

Uij, dij ≥ 80Å

, (31)

where dij is the Cα or Cβ distance between the ith and jth residues of the 
model, and Uij is calculated by equation (10). dcut = 8Å and D = 8 Å + dwell, 
where dwell is the well width of the first sine function term and 80-D is 
the well width of the second sine function term. The well width (dwell) 
is a crucial parameter to determine the rate at which residues that are 
predicted to be in contact are drawn together, and it was tuned based 
on the length of the training proteins.

Model selection and atomic structure generation. Decoy structures 
generated from the REMC simulations of D-I-TASSER are then clustered 
by SPICKER (v3.0) with the backbone atoms added by REMO (v1.0) 
and the side chains repacked by FASPR (v1.0) to remove steric clashes. 
Finally, the fragment-guided molecular dynamics (FG-MD) refinement 
pipeline is used to derive the atomic-level structural models.

SPICKER30 (https://zhanggroup.org/SPICKER) is a clustering algo-
rithm to identify near-native models from a pool of protein structure 
decoys. The most frequently occurring conformations in the 
D-I-TASSER structure assembly simulations are selected by the SPICKER 
clustering program. These conformations correspond to the models 
with the lowest free energy states in the Monte Carlo simulations 
because the number of decoys at each conformational cluster nc is 
proportional to the partition function Zc, that is, nC ∼ Zc = ∫ e− EdE . 
Thus, the logarithm of the normalized cluster size is related to the free 
energy of the simulation, that is, F = −kBT logZ ∼ log(nc/ntot) where ntot 
is the total number of decoys submitted for clustering. After SPICKER 
clusters the structure decoys produced by the first round of simula-
tions, the cluster centroids are generated by averaging all the clustered 
structures after superposition. Because the centroid models often 
contain steric clashes, a second round of assembly simulations is con-
ducted by D-I-TASSER to remove the local clashes and to further refine 
the global topology. Starting from the cluster centroid conformations, 
the REMC simulations are performed again. The distance and contact 
restraints in the second round of the D-I-TASSER simulations are taken 
from the combination of the centroid structures and the PDB structures 
searched by the structure alignment program TM-align80 based on the 
cluster centroids. The conformation with the lowest energy in the 
second round is selected. Finally, REMO (https://zhanggroup.org/
REMO)82 is used to add backbone atoms (N, C and O), and FASPR 
(https://zhanggroup.org/FASPR)83 is used to build side-chain 
rotamers.

The FG-MD84 protocol (https://zhanggroup.org/FG-MD) is a 
molecular dynamics (MD)-based algorithm for atomic-level protein 
structure refinement. Starting from a target protein structure, the 
sequence is split into separate secondary structure elements (SSEs). 
The substructures of every three consecutive SSEs, together with the 
full-chain structure, are used as probes to search through a nonre-
dundant PDB library by TM-align80 for structure fragments closest 
to the target. The top 20 template structures with the highest TM 

scores28 are used to collect spatial restraints. Simulated annealing MD 
simulations are then carried out using a modified version of LAMMPS85  
(9 January 2009), which is guided by the following four energy potential 
terms: distance map restraints, explicit hydrogen bonding, a repulsive 
potential and the AMBER99 force field86. The final refined models are 
selected on the basis of the sum of the z score of the HBs, z score of the 
number of steric clashes and z score of the FG-MD energy.

Global quality estimation of D-I-TASSER structure predictions. 
The global quality of a structural model is usually assessed by the TM 
score (https://zhanggroup.org/TM-score) between the model and the 
experimental structure:

TMscore = 1
L

Lali
∑
i=1

1

1 + ( di
d0
)
2 , (32)

where L is the number of residues, di is the distance between the ith 
aligned residue and d0 = 1.243√L − 15 − 1.8  is a scaling factor. The TM 
score ranges between 0 and 1, with TM scores ≥0.5 indicating that the 
structural models have correct global topologies. Stringent statistics 
showed that a TM score >0.5 corresponds to a similarity with two struc-
tures having the same fold defined in SCOP/CATH29.

Please note that the TM score can be discrepant with the widely 
used RMSD for some protein structure pairs. On the one hand, RMSD 
(= √

1
n
∑n
i=1d

2
i ) is calculated as an average of distance error (di) with equal 

weight over all residue pairs. Therefore, a large local error on a few 
residue pairs may result in a quite large RMSD. On the other hand, by 
putting di in the denominator, the TM score naturally weighs more for 
smaller distance errors than larger distance errors, resulting in the TM 
score value being more sensitive to the global structural similarity 
rather than to the local structural errors, compared to RMSD. Another 
advantage of the TM score is the introduction of the scale 
d0 = 1.243√L − 15 − 1.8, which makes the magnitude of TM score length 
independent for random structure pairs, while RMSD is a 
length-dependent metric28. Due to these reasons, our discussion of 
modeling results is mainly based on the TM score. Because RMSD is 
intuitively more familiar to most readers, however, we also list RMSD 
values when necessary.

For real-world protein structure prediction, when experimental 
structures are not available, an estimation of the modeling accuracy 
is essential for users to decide how to use the models in their own 
research. In this study, we make use of the eTM score of the structure 
assembly simulations to assess the expected accuracy of the D-I-TASSER 
structural models:

eTMscore = w1ln (
M

Mtotal
× 1

<RMSD>
) +w2ln (∏

m

Z(m)
Z0(m)

)

+w3wneff ln (
O(CMmodel ,CMpred)

n(CMpred)
)

+w4wneff ln
1
n

n
∑
(i, j)

||d
pred
i, j − dmodeli, j

|| +w5wneffpLDDT +w6

(33)

wneff = min (max (0.98,
log2 (neff) − 4

12 − 4 ) , 1) , (34)

where Mtotal is the total number of decoy conformations used for clus-
tering, M is the number of decoys in the top cluster and <RMSD> is the 
average RMSD among decoys in the same cluster. These three terms 
describe the extent of convergence of the structure assembly simula-
tions. Z(m) is the score of the top template by the threading method, 
m, and Z0(m) is a cutoff above which templates are considered reliable/
good. These z-score-related measures describe the significance of the 
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LOMETS3 threading templates and alignments. n(CMpred) is the number 
of predicted contacts used to guide the REMC simulation, and 
O(CMmodel,CMpred) is the number of overlapped contacts between the 
final model and the predicted contacts. These three terms account for 
the contact satisfaction rate. dmodeli,j  is the Cβ–Cβ distance between resi-
due i and j extracted from the D-I-TASSER structural model, dpredi,j  is  
the predicted Cβ–Cβ distance between residue i and j from a combina-
tion of AlphaFold2, AttentionPotential and DeepPotential and the neff 
is calculated by equation (1). pLDDT is the pLDDT score from Alpha-
Fold2. w1 = 0.032, w2 = 0.010, w3 = 0.014, w4 = −0.071, w5 = −0.052 and  
w6 = 0.660 are free parameters that we obtained by linear regression.

We analyzed the effect of the eTM score on evaluating the model 
quality, as shown in Fig. 5a. We calculated the true TM scores between 
models and experimental structures and the eTM scores for the pre-
dicted models for 1,492 (=1,262 single domain + 230 multidomain) 
mixed proteins in benchmark datasets. We found that the eTM score 
had a strong correlation with the real TM score, with PCCs of 0.79 for 
the dataset.

COFACTOR for function annotation. COFACTOR (v2.0, https://zhang-
group.org/COFACTOR)40 is a structure, sequence and protein–protein 
interaction (PPI) based method for biological function annotation of 
protein molecules. Starting from the 3D structural model, COFACTOR 
will thread the query through the BioLiP (https://zhanggroup.org/
BioLiP) protein function database by local and global structure matches 
to identify functional sites and homologies. Functional insights, includ-
ing GO, EC and LBSs, will be derived from the best functional homology 
templates.

GO term prediction. MetaGO (v1.0, https://zhanggroup.org/MetaGO)87 
is used for predicting the GO terms of proteins. It consists of three 
pipelines to detect functional homologs through (1) local and global 
structure alignments, (2) sequence and sequence profile comparison 
and (3) partner-homology-based PPI mapping. The final function pre-
dictions are a combination of the following three pipelines via logistic 
regression: (1) structure-based pipeline, (2) sequence-based pipeline 
and (3) PPI-based pipeline.

In the structure-based pipeline, the query structure is compared 
to a nonredundant set of known proteins in the BioLiP library88 through 
two sets of local and global structural alignments based on the TM-align 
(https://zhanggroup.org/TM-align/) algorithm80, for functional homol-
ogy detections. Here BioLiP is a semi-manually curated structure–func-
tion database containing known associations of experimentally solved 
structures and biological functions of proteins in terms of GO terms, 
EC number and LBSs. The current version of BioLiP contains 35,238 
entries annotated with 465,838 GO terms.

In the sequence-based pipeline, a query is searched against the 
UniProt-GOA by BLAST (2.5.0+) with an E value cutoff of 0.01 to identify 
sequence homologs, where unreviewed annotations inferred from 
electronic annotation or no biological data available evidence codes are 
excluded. Similarly, a three-iteration PSI-BLAST search is performed for 
the query through the UniRef90 (ref. 59) database to create a sequence 
profile, which is used to jump-start a one-iteration PSI-BLAST (2.5.0+) 
search through UniProt-GOA.

In the PPI-based pipeline, the query is first mapped to the STRING89 
PPI database by BLAST; only the BLAST hit with the most significant 
E values is subsequently considered. GO terms of the interaction 
partners, as annotated in the STRING database, are then collected 
and assigned to the query protein. The underlying assumption is that 
interacting protein partners tend to participate in the same biological 
pathway at the same subcellular location and, therefore, may have 
similar GO terms.

EC number prediction. The pipeline of EC number prediction is similar to  
the structure-homology-based method used in GO prediction. 

Enzymatic homologs are identified by aligning the target structure, 
using TM-align, to a library of 8,392 enzyme structures from the BioLiP 
library, with the active site residues mapped from the Catalytic Site 
Atlas database90.

LBS prediction. Ligand-binding prediction in COFACTOR consists of 
the following three steps:

First, functional homologies are identified by matching the query 
structure through a nonredundant set of the BioLiP library, which cur-
rently contains 58,416 structure templates harboring a total of 76,679 
LBSs for interaction between receptor proteins and small molecule 
compounds, short peptides and nucleic acids. The initial binding sites 
are then mapped to the query from the individual templates based on 
the structural alignments.

Next, the ligands from each individual template are superposed 
to the predicted binding sites on the query structure using superposi-
tion matrices from a local alignment of the query and template bind-
ing sites. To resolve atomic clashes, the ligand poses are refined by a 
short Metropolis Monte Carlo simulation under rigid-body rotation 
and translation.

Finally, the consensus binding sites are obtained by clustering 
all ligands that are superposed to the query structure, based on dis-
tances of the centers of mass of the ligands using a cutoff of 8 Å. Dif-
ferent ligands within the same binding pocket are further grouped 
by the average linkage clustering with chemical similarity, using the 
Tanimoto coefficient91 with a cutoff of 0.7. The model with the highest 
ligand-binding confidence score among all the clusters is selected.

Resource requirement. The standalone version of D-I-TASSER is avail-
able for download at https://zhanggroup.org/D-I-TASSER/download/ 
and can be installed on any Linux-based machine, ranging from laptops 
to high-performance computing clusters. The package itself requires 
approximately 15 GB of hard disk space, with an additional 200 GB 
to 3 TB needed for the library, depending on whether the DeepMSA2 
databases are included. We tested the D-I-TASSER standalone pack-
age on 645 proteins, with sequence lengths ranging from 30 to 350 
amino acids, using ten CPUs, with detailed running time comparisons 
provided in Supplementary Fig. 13. On average, D-I-TASSER generates 
five models within 8.2 h, requiring approximately 20 GB of memory. 
While these resource requirements and running times are slightly 
higher than those of AlphaFold2 (1.2 h and 60 GB of memory), the 
improved modeling performance of D-I-TASSER justifies the modest 
increase in computational demand, particularly when considering 
the substantial amount of experimental effort and expense likely to 
be driven by the predictions.

Model quality assessment and data analysis. TM score (22 August 
2019) program is used in the work to assess the model quality, and all 
data statistical analyses are done by R (v4.4.2).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

DATA availability
All benchmark datasets are available at https://zhanggroup.org/ 
D-I-TASSER/download/ and https://zenodo.org/records/15058641 
for academic use. The structure and function modeling results on 
the human proteome are freely available at https://zhanggroup.org/
HPmod and https://zenodo.org/records/15065861 (refs. 92,93) for 
academic use. Source data are provided with this paper.

Code availability
The online server of D-I-TASSER is freely available at https://zhang-
group.org/D-I-TASSER, and the standalone package is available at both 
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