Home Research COVID-19 Services Publications People Teaching Job Opening News Forum
Online Services

I-TASSER I-TASSER-MTD C-I-TASSER CR-I-TASSER QUARK C-QUARK LOMETS MUSTER CEthreader SEGMER DeepFold DeepFoldRNA FoldDesign COFACTOR COACH MetaGO TripletGO IonCom FG-MD ModRefiner REMO DEMO DEMO-EM SPRING COTH Threpp PEPPI BSpred ANGLOR EDock BSP-SLIM SAXSTER FUpred ThreaDom ThreaDomEx EvoDesign BindProf BindProfX SSIPe GPCR-I-TASSER MAGELLAN ResQ STRUM DAMpred

TM-score TM-align US-align MM-align RNA-align NW-align LS-align EDTSurf MVP MVP-Fit SPICKER HAAD PSSpred 3DRobot MR-REX I-TASSER-MR SVMSEQ NeBcon ResPRE TripletRes DeepPotential WDL-RF ATPbind DockRMSD DeepMSA FASPR EM-Refiner GPU-I-TASSER

BioLiP E. coli GLASS GPCR-HGmod GPCR-RD GPCR-EXP Tara-3D TM-fold DECOYS POTENTIAL RW/RWplus EvoEF HPSF THE-DB ADDRESS Alpaca-Antibody CASP7 CASP8 CASP9 CASP10 CASP11 CASP12 CASP13 CASP14

EvoEF logo

EvoEF is a composite energy force field that currently contains two versions. The first version, EvoEF1, includes five energy terms with parameters optimized on two large sets of thermodynamics mutation data (ΔΔGstability and ΔΔGbind), while the second version, EvoEF2, includes nine energy terms and is specifically optimized based on the recapitulation of de novo protein sequence design. Extensive benchmark and analysis showed that the usefulness of energy functions is highly correlated with the parameter optimization processes. While EvoEF1 performs better than EvoEF2 on ΔΔG estimation, EvoEF2 significantly outperforms EvoEF1 on de novo protein sequence design. Therefore, we suggest users download the two versions according to their own needs.

Please direct questions and inquiries to our Service System Discussion Board or contact Dr. Xiaoqiang Huang.

EvoEF source code
[Now the EvoEF source code is updated and maintained only at https://github.com/tommyhuangthu/]


  • EvoEF2
      If you are interested in de novo protein design on a given fixed protein backbone, EvoEF2 is the suitable program. The package is more than an energy function and we have implemented a simulated annealing Monte-Carlo optimization procedure for fast protein sequence design. Based on our test, it takes less than 15 minutes to completely design a protein about 200 amino acids long on an single CPU (Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz) using the default backbone-depdent rotamer library 'dun2010bb3per.lib' provided in the package. The procedure can also be used for protein side-chain prediction with very high accuracy.
  • EvoEF1
      If you are interested in identifying useful mutations or hotspots at protein-protein interfaces, EvoEF1 is a better choice. We have also built a user friendly web-server, SSIPe, focused on accurate prediction of binding affinity changes (ΔΔGbind) upon mutations at protein-protein interfaces. SSIPe combined structural and sequence conservation profiles and EvoEF1, and we also provide a standalone version of SSIPe for users to run it on their own machine.

    EvoEF benchmark datasets


  • Download 136 non-redundant monomer structures (proteins <30% sequence identity).
      This data set was used to test the significance of rotamer libraries on protein side-chain packing (PSCP), which is a important step in protein structure prediction and protein design.
  • Download EvoEF2 datasets (proteins <30% sequence identity).
      This data set was used to train and test EvoEF2 for de novo protein design. It includes 222 monomers and 132 dimers for training, 148 monomers and 88 dimers for test.
  • Download EvoEF1 datasets (3989 and 2204 non-redundant ΔΔGstability and ΔΔGbind data, respectively).
      This data set was used to train and test EvoEF1 for thermodynamic change data prediction. According to our benchmark, EvoEF1 outperforms FoldX on both ΔΔGstability and ΔΔGbind prediction.


    Reference:
    • Xiaoqiang Huang, Robin Pearce, Yang Zhang. EvoEF2: accurate and fast energy function for computational protein design. Bioinformatics (2020) 36:1135-1142. [PDF] [SI] [EvoEF2 paper]
    • Robin Pearce, Xiaoqiang Huang, Dani Setiawan, Yang Zhang. EvoDesign: Designing protein-protein binding interactions using evolutionary interface profiles in conjunction with an optimized physical energy function. Journal of Molecular Biology (2019) 431:2467-2476. [PDF] [SI] [EvoEF1 paper]
  • yangzhanglabumich.edu | (734) 647-1549 | 100 Washtenaw Avenue, Ann Arbor, MI 48109-2218