Home Research COVID-19 Services Publications People Teaching Job Opening News Forum
Online Services

I-TASSER I-TASSER-MTD C-I-TASSER CR-I-TASSER QUARK C-QUARK LOMETS MUSTER CEthreader SEGMER DeepFold DeepFoldRNA FoldDesign COFACTOR COACH MetaGO TripletGO IonCom FG-MD ModRefiner REMO DEMO DEMO-EM SPRING COTH Threpp PEPPI BSpred ANGLOR EDock BSP-SLIM SAXSTER FUpred ThreaDom ThreaDomEx EvoDesign BindProf BindProfX SSIPe GPCR-I-TASSER MAGELLAN ResQ STRUM DAMpred

TM-score TM-align US-align MM-align RNA-align NW-align LS-align EDTSurf MVP MVP-Fit SPICKER HAAD PSSpred 3DRobot MR-REX I-TASSER-MR SVMSEQ NeBcon ResPRE TripletRes DeepPotential WDL-RF ATPbind DockRMSD DeepMSA FASPR EM-Refiner GPU-I-TASSER

BioLiP E. coli GLASS GPCR-HGmod GPCR-RD GPCR-EXP Tara-3D TM-fold DECOYS POTENTIAL RW/RWplus EvoEF HPSF THE-DB ADDRESS Alpaca-Antibody CASP7 CASP8 CASP9 CASP10 CASP11 CASP12 CASP13 CASP14


SEGMER is a segmental threading algorithm designed to recoginzing substructure motifs from the Protein Data Bank (PDB) library. It first splits target sequences into segments which consists of 2-4 consecutive or non-consecutive secondary structure elements (alpha-helix, beta-strand). The sequence segments are then threaded through the PDB to identify conserved substructures. It often identifies better conserved structure motifs than the whole-chain threading methods, especially when there is no similar global fold existing in the PDB.

Cut and paste your sequence here (in FASTA format):

Or upload the sequence from your local computer:

Email: (mandatory, where results will be sent to)

ID: (optional, your given name of the protein)



  • The SEGMER program is downloadable at the download page.


    Reference:
    S. Wu, Y. Zhang. Recognizing Protein Substructure Similarity Using Segmental Threading. Structure, 2010 18: 858-867 (download the PDF file).
  • yangzhanglabumich.edu | (734) 647-1549 | 100 Washtenaw Avenue, Ann Arbor, MI 48109-2218